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I study learning in auctions under limited commitment. In each period, the seller

sets the terms for an auction selling an indivisible good among multiple buyers; but

if the item fails to sell, he cannot pre-commit to the terms of future offerings. I find

that, in interdependent value settings, the seller’s equilibrium revenues are greater than

immediately running an efficient, Vickrey auction. In contrast with private value settings,

this result persists regardless of how often agents interact. This is because learning among

buyers ensures lowers buyer valuations and ensure that the seller stops re-offering his

good in finite time.
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Coase (1972) illustrated how limited commitment (i.e., sequential rationality) reduces prof-

its. A monopolists sequentially offers a durable good to patient buyers. In each period, high

valuation buyers are more likely to purchase the good than their low valuation peers. In re-

sponse, the seller progressively lowers prices, which delays purchases and lowers profits. Such

intuition generalizes to auctions (Liu et al 2019 and Vincent and McAfee 1997) and is a key con-

sideration in dynamic contracting when the principal has limited commitment (Skreta 2006,2015

and Doval and Skreta 2022).

The argument above, however, depends on buyers knowing their valuation. This assumption

seldom holds. For example, buyers participating in an art auction differ in their taste for art, but

all value a painting’s resale value. Since an artwork’s resale value is often unknwon and buyers
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are differently informed of its realization, bidding behavior informs valuations. Does learning

among buyers consequently changes the logic posited by Coase in a significant manner? I find

that learning among buyer (at least partially) contravenes the Coase conjecture in the case of

auctions.

As previously mentioned, art auctions are an ideal test-case for the dynamics described by

Coase i.e., Coasian dynamics. Do art auctions provide empirical evidence for Coasian dynam-

ics? Using an Impressionist art auction data (in appendix D), I analyze how often artworks

that fail to sell at auction and how frequently are those artworks re-auctioned. I find that

30 percent of paintings brought up to auction failed to sell, but that 90 percent of these art-

works were re-auctioned at a later date. Furthermore, even when artworks that failed to sell

at auction are re-auctioned, sellers wait (on average) more than 5 years and pick a different

auction house and location more than 65 percent of the time. This implies most real-world

sellers avoid re-auctioning artwork failing to sell in spite of being sequentially rational. I claim

that interdependence in valuations (by itself) can rationalize this behavior.

In this paper, I study auctions under limited commitment when buyers have interdependent

valuations. In each period, the seller runs a second-price auction with a reserve price; but if

the item fails to sell, he cannot pre-commit to future reserve prices. I find that as the item

remains unsold, buyers become increasingly pessimistic of their peers’ private information and

subsequently lower their willingness to pay. After finitely many periods, the seller expects to

value the good more than buyers and keeps his good from henceforth. My main result states

that learning dynamics (as described below) ensures a revenue floor that does not depend on

how often the seller transacts with buyers.

Under mild conditions, it is further the case that the seller’s revenues equal the maximum

revenues attained with full commitment i.e., when the seller is not required to be sequentially

rational. The appendix further clarifies that the paper’s insights persist in a broad class of

auction and non-auction environments. In the following paragraph, I described in more detail

how learning among buyers precludes serial auctions but delegate a formal example to section I.

Intuition Behind Main Results. — The results are clear when an item has a common value.

Section I presents this example in detail, but I summarize the intuition below. Each buyer
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first receives private signals regarding the item’s common value. Then, the seller sequentially

auctions his item until it sells. If the seller has full commitment, he immediately runs his revenue

maximizing (optimal), static auction and never re-auctions his good. Otherwise, he has limited

commitment and may prefer to re-auction his good if it failed to sell and this reduces profits.

Still, I find conditions for when a seller with limited commitment avoids re-auctioning his good.

The seller immediately runs the optimal, static auction. If the item sells, the game ends,

so there is no commitment issue. Otherwise, each buyer expects that his peers are more likely

to wait when they observe bad rather than good news regarding the common value. This

prompts buyers to reduce their valuation for the good. In turn, this fall in valuations reduces

the probability that a buyer values the good more than the seller. When private signals have

bounded precision and there are enough buyers, learning among buyers expunges the gains from

trade. Thus, the seller opts to keep his good.

In general, learning ensures that the seller stops re-auctioning his good in finite time and

this imposes a revenue floor. This is driven by two effects. First, there always exist auctions

where upon the good failing to sell, learning ensures that there are no additional gains from

trade. The second effect is that learning further enables the seller to extract an increasing share

of the remaining trade surplus. This is because learning among buyers lowers the dispersion in

valuations over time, which increases competition among buyers.

The effects discussed above are implications of a technical result called progressive pes-

simism. This result states that in every period, buyers’ initial beliefs regarding their peers’

willingness to pay likelihood ratio dominate their posterior beliefs. Informally, this means that

buyers beliefs regarding their peer’s private information is stochastically decreasing.

In section IV, I present an additional implication of progressive pessimism: it ameliorates the

winner’s curse over time. Buyers bid a fraction of their expected valuation because the winning

buyer expects to have received an overly optimistic estimate of his valuation. However, buyers

screen their peers over time and increasingly expect to be able to win the auction, regardless

of the common value. This implies that winning the good is increasingly uninformative and

hence competition among buyers ensures that buyers to bid an increasing share of their current

valuation.

The paper is organized at follows. Section I presents the main results in a stylized model. I
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then introduce the general model in section II and the main results are in section III. Section IV

then presents the winner’s curse results. Next, section V discusses the related literature. Lastly,

section VI presents the discussion and concludes.

I. Motivation: Selling Art.

This section illustrates the paper’s main contribution, i.e. learning among buyers can con-

travene the Coase conjecture. A seller can auction a painting to a fixed set of patient buyers

until the artwork sells. If the seller has full commitment, he is better off immediately running the

revenue maximizing, static auction and keeping the painting if it fails to sell. Keeping paintings

failing to sell, however, is seldom sequentially rational.

When buyer valuations are independent and the seller has limited commitment (i.e., he is

sequentially rational), Liu et al (2019) proves that the seller’s revenues converge to immediately

running an efficient auction as the seller transacts with buyers increasingly frequently. This is the

auction analog of the Coase conjecture. Meanwhile, when buyer valuations are interdependent,

I show that the seller can attain strictly higher revenues, regardless of how often the seller

transacts with his buyers. In fact, I find conditions for when the seller can immediately run the

revenue maximizing, static auction and find it sequentially rational to keep his item when it fails

to sell.

A. Environment

A seller offers a painting to n ≥ 2 buyers. Each buyer i has a valuation vi that depends

multiplicatively on a private value θi and a common value q i.e.,

vi ≡ θiq.

The private values (θi) are drawn iid uniformly between 0 and 1; meanwhile, q is high (i.e.,

q = 1) with probability λ ∈ (0, 1) or otherwise low (q = 0). I assume that q is independent of the

private values. Next, each buyer i further observes a signal xi that is good news (i.e., xi = 1) or

bad news (xi = 0). Conditional on q, I assume that the signals are drawn iid, but for each buyer

i it holds that xi = q with probability π ∈ (1/2, 1). This assumption implies that the signals
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are informative and that the expected common value conditional on observing a good signal is

higher than observing a bad signal: E[q|xi = 1] > E[q|xi = 0].

Meanwhile, the seller has a commonly known valuation, called θs, that does not depend

on the common value q. This assumption is important since it simplifies exposition and avoids

the issues associated with an informed seller i.e., the seller does not observe a private signal

that would inform buyer valuations. Also, the results presented below can be extended to the

case when the seller’s valuation depends on q: seller’s valuation is θs(q). I further assume, for

exposition, that the seller’s valuation is higher than buyers observing bad news but smaller than

some buyers observing good news i.e.,

E[q|xi = 0] < θs < E[q|xi = 1].

Next, the timing of play is as follows. Nature first draws the common value q, private values

(θi), and the signals (xi). It then privately informs each buyer i of (θi, xi). In period t = 0, 1, . . .,

the seller first posts a reserve price pt ∈ [0, 1]. Buyers then decide to wait or submit a bid bit

such that bit ≥ pt. If no buyer bids, the game continues to period t + 1. Otherwise, the game

ends, the buyer submitting the highest bid wins the auction, and either pays the second highest

bid or pt provided that no other buyer placed a bid. Moreover, if multiple buyers submit the

highest bid, then each buyer wins with equal probability. The timing of play is illustrated in

figure I. Lastly, if buyer i wins the item in period t and must pay pit ≥ pt, payoffs are

i. Buyer i: δt(θiq − pit) for common discount factor δ ∈ (0, 1),

ii. Buyers j ̸= i: 0

iii. Seller: (1− δt)θs + δtpit.

The rest of the section proceeds as follows. First, I illustrate the revenue maximizing

equilibrium under full commitment. Next, I provide a sufficient condition ensuring that the

strategy profile above remains an equilibrium when one requires the seller to be sequentially

rational, i.e. he has limited commitment. I lastly discuss how this result generalizes and extends

to more general settings.
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Figure I. : Timing of play at each period t = 0, 1, . . . conditional on the item remaining unsold.

B. Full Commitment Benchmark

Even though I focus on the revenues that a sequentially rational seller can attain, it is

useful to first characterize the optimal strategy under full commitment. An optimal strategy

for the seller is a price schedule (pt) that maximizes expected revenues in period 0. Since such

price schedules are not required to maximize revenues at each history, the maximum revenues

attained by a seller with full commitment cannot be less than the maximum revenue with limited

commitment. Hence, the full commitment benchmark is an upper bound on the revenues that

a seller can attain.

In lemma 1, I establish that the seller cannot improve posting a constant price schedule i.e.,

for each period t, pt = p ∈ [0, 1] almost surely. This is because the seller is impatient and (as

shown below) valuations fall as the item remains unsold. Consequently, delaying when buyers

submit bids both delays when payments are made and lowers the rents that the seller extracts.

It is further immediate that if a price schedule (pt) does not prompt buyers to delay when they

submit a bid, then fixing prices at p0 nets the seller the same revenues. This implies that the

seller cannot improve upon running the optimal, static auction in period 0 and never re-offering

his good again. Let p∗ ≥ θs
1 be the reserve price associated with the optimal static auction,

then an optimal strategy for the seller is (pt = p∗).

Next, when the seller fixes prices at p∗, buyers behave myopically. This implies that buyers

expect to only submit a bid in period 0 and do so if and only if (iff) their valuation is greater

than p∗. But what are buyer valuations? Buyers bid their valuation conditional on winning

since buyers face a winner’s curse. This means that buyer i is more likely to win if i observed

1It is immediate that the optimal reserve price p∗ ≥ θs; otherwise, the seller sells his painting to a buyer for strictly less

than he values the painting with a strictly positive probability.
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good news (i.e., xi = 1) and most peers j observed bad news (xj = 0). Since E[q|xi = 0] < θs,

then a buyer i observing good news expects to outbid each peer j is j observed bad news or he

observes good news and a private value that is less than θi i.e.,

wi ≡ θtE[q|xi = 1,∀j ̸= i, xj = 0 or xj = 1, θj ≤ θi].

I focus on symmetric equilibria for which this is the unique equilibrium. If one allows the

buyers to play asymmetric strategies, revenues are lower but this is an well understood issue that

is orthogonal to this paper’s contribution. I now states the following lemma, which formalizes

the results described above.

LEMMA 1 (First Best): When the seller has full commitment, he posts pt = p∗ in each period

t and each buyer i bids wi in period 0 iff wi ≥ p∗.

The argument behind lemma 1 is standard and I delegated its prove to appendix A. What

matters is that a buyer submits a bid in period 0 iff they observe xi = 1 and a private value

θi that is above a cutoff θ∗ ≥ θs. I further find that the cutoff θ∗ is strictly increasing in θs,

because buyers submitting bids (in equilibrium) must value the good more than the seller.

C. Limited Commitment

I now present a condition ensuring that the strategy profile in lemma 1 is sequentially

rational. To do so, I first conjecture agents follow the strategy profile in question. I then

characterize how buyers update their beliefs regarding q upon learning that the item failed to

sell. Lastly, I derive a condition on primitives ensuring that the seller values the good more than

all buyers in period t ≥ 1 and hence he keeps his good.

Suppose that the painting failed to sell in period 0 and agents follow the strategy profile in

lemma 1. Each buyer i then infers that his peers waited. Buyer i expects that buyer j ̸= i either

received good news but his private value was below θ∗ or he received bad news. Buyer i then

derives a new valuation, i.e. vi1 = θiE1[q|xi = 1], via Bayes rule. To do so, he first determines

the initial probability that his peers waited. Since conditional on q signals and private values

are drawn independently, the probability that j ̸= i waits is
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Pr(j waits|q) = w(θ∗, q) ≡ Pr(xj = 0|q)︸ ︷︷ ︸
Bad news

+Pr(xj = 1|q)︸ ︷︷ ︸
good news

Pr(θj ≤ θ∗)︸ ︷︷ ︸
Low θj

=


(1− π) + πθ∗ q = 1

π + (1− π)θ∗ q = 0.

Since π > 1
2 and θ∗ < 1, buyer j is more likely to wait when q = 0 than when q = 1. Further

notice that, conditional on q, signals and private values are drawn iid across buyers. Hence, i

expects that, conditional on q, each pair of buyers j, k ̸= i decided to wait independently. Thus,

the probability that his peers waited was w(θ∗, q)n−1. By Bayes rule, i’s period 1 valuation is

(1) vi1 ≡ θiPr(q = 1|xi = 1, no trade at t = 0) =
θiπλw(θ

∗, 1)n−1

πλw(θ∗, 1)n−1 + (1− π)(1− λ)w(θ∗, 0)n−1
.

In what follows, I provide a condition ensuring that the seller values the good more than

all buyers, i.e. vi1 ≤ θs for each buyer i. This implies that the strategy profile in lemma 1 is

sequentially rational.

Sufficient Condition. — I now provide a condition for when the seller decides to keep his

good after period 1. Intuitively, the seller keeps his painting provided that he does not expect

to extract more rents from buyers than his valuation for the good, i.e. θs. This is certainly true

when no buyer in period 1 values the good more than the seller. In such case, it holds that:

LEMMA 2 (Learning to Commit): A sufficient condition for the seller to optimally posts pt =

p∗ in each period t is that

(2)
Pr(q = 1|xi = 1, no trade at t = 0)

Pr(q = 0|xi = 1, no trade at t = 0)
≡

(
λ

1− λ

)(
π

1− π

)[
w(θ∗, 1)

w(θ∗, 0)

]n−1

≤ θs
θ∗ − θs

.

This condition states that the seller avoids re-offering the good provided that the event in

which all buyers wait is sufficiently informative of q. Informally, it means that the seller avoids

re-offering his good, because learning among buyers lowers valuations enough to expunge the

seller’s gains from trade.
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D. Discussion

I now discuss how and why the Coase conjecture fails in settings with interdependent values.

Firstly, negative selection in the demand pool persists, i.e. high value buyers are more likely to

bid than their low value peers, and prompts the seller to unprofitably screen his buyers. Secondly,

negative selection further prompts buyers to screen each other, and this lowers valuations. When

the second effect is sufficiently stark, the seller avoids screening his buyers and implements his

optimal strategy.

In general, screening among buyers ensures that the Coase conjecture fails when the seller’s

valuation lies in the interior of potential buyer valuations. The seller stops re-offering his item in

finite time, which this ensures that equilibrium revenues are unique and greater than immediately

running an efficient auction. The intuition is threefold. Firstly, the seller still screens his buyers,

i.e. if the item fails to sell, agents learn that valuations lie below a falling cutoff. Second, buyer

valuations, themselves, fall over time. Lastly, the seller increasingly expects that there are fewer

buyers who value the good more than himself.

The rest of the paper proceeds as follows. First, section II presents the general model. I

generalize the distributions of types as well as the payoff function. Furthermore, I ensure that

negative selection in the demand pool occurs in equilibrium.2 Section III then states the results

in the general model. I then discuss, in section IV, an additional effect of pessimism, i.e. it

ameliorates the winner’s curse. Next, I present the literature review in section V and discuss

the assumptions, results, and extensions in section VI. Lastly, appendix C illustrates that the

results herein extend to durable goods markets.

II. Model

This section presents the model. First, I present the primitives, i.e. types, distributions of

types, payoffs, and the seller’s valuation. Next, I introduce the timing of the game. Lastly, I

define strategies and equilibrium.

2In order to test whether learning among buyers prevents the Coase conjecture, it must be the case that there is negative

selection in the demand pool; otherwise, the conjecture can fail due to non-learning factors.
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A. Primitives

A seller offers a single, indivisible item to n ≥ 2 buyers. Each buyer i has a type τi ∈ T ≡
[0, 1]2. Buyer i’s type (i.e., τi) consists of a private value θi ∈ [0, 1] and an interdependent value

xi ∈ [0, 1]. All random variables (i.e., (θi, xi)i) are drawn pairwise independently where each

private value is distributed given a CDF K and the interdependent values given a CDF F . I

further assume that the CDFs K and F admit PDFs k ≫ 0 and f ≫ 0. Next, if buyer i has type

τi and other buyers have interdependent values x−i ∈ [0, 1]n−1, the i’s payoff from owning the

item is u(τi, x−i). I assume that the payoff function u : [0, 1]n+1 → [0, 1] satisfies the following

regularity conditions stated in assumption 1.

ASSUMPTIONS 1: The payoff function u(·) is strictly increasing; continuously differentiable;

satisfies u(0, 0, . . . , 0) = 0 and u(1, 1, . . . , 1) = 1; log-supermodular; and it is symmetric i.e., for

each tuple (τi, x−i) and permutation σ(·), it holds that

(3) u(τi, x−i) = u[σ(τi, x−i)].

The assumptions 1 are regularity conditions ensuring that the results herein are not driven

by obscure, technical assumptions. There are some assumptions, however, that require some

clarification. First, log-supermodularity is a standard assumption ensuring that for each player

i, type τi and other players’ interdependent component x−i enter payoffs as complements. Mean-

while, I assume symmetry of payoffs for exposition since most results would go through requiring

more involved formal arguments.

Next, I ensure that there are gains from trade; otherwise, the point of the paper is moot.

If the seller never expects to gain from auctioning his good, then it will vacuously holds that

he never auctions the good in the first place. Now, suppose that the revenue maximizing, static

auction has a reserve price of p∗ ∈ [0, 1] in which buyers bid their valuation conditional on

winning i.e.,

wi0 ≡ E0[u(τi, x−i)|τi, i wins]

where for each type τi, the expectation is taken with respect to the initial distributions K
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and F . Each buyer i further expects that each buyer j( ̸= i) bids wj0 iff wj0 ≥ p∗; otherwise,

buyer j waits and does not place a bid. It is the useful to define the CDF of valuations (wi0) as

H0 and its PDF as h0. I can now make the assumption ensuring that there are (initially) gains

from trade.

ASSUMPTIONS 2: Let the seller’s valuation for the good be θs ∈ (0, 1), then I assume that the

probability that some buyer is willing to bid more than the seller’s valuation for the good at the

optimal static auction is strictly positive but that some buyers would be willing to bid less than

the seller i.e.,

H0(θs) < 1.

B. Timing and Payoffs

After establishing the setting’s primitive, I now state the timing of play. I assume the most

standard timing possible in order to ensure that the results herein are not driven by non-standard

assumptions. It should further be notice that the timing is similar to the one provided in the

example.

The timing of play is as follows. Nature first draws types (τi) and privately informs τi to

player i. The types are drawn as previously discussed. Next, at each period t = 0, 1, . . ., the

seller first announces a reserve price pt ∈ [0, 1]. Each buyer i then decide to wait or submit a

bid bit ≥ pt. I assume that buyer submit bids at the same time. If buyers wait (i.e., no buyer

i submitted some bid bit), the game continues to period t + 1. Otherwise, the game ends, the

buyer submitting the highest bid wins the auction, and either pays the second highest bid or

pt provided that no other buyer placed a bid. Moreover, if multiple buyers submit the highest

bid, then each buyer wins the auction with equal probability. The timing of play is illustrated

in figure I. Lastly, if buyer i wins the auction in period t = 0, 1, . . . and must pay pit, payoffs are

i. Buyer i: δt[u(τi, x−i)− pit] for a common discount factor δ ∈ (0, 1)

ii. Buyer j ̸= i: 0

iii. Seller: δtpit +
∑t−1

s=0(1− δ)δsθs = δtpit + (1− δt)θs.
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Note that if the time never sells, then each buyer i’s payoff equals to 0 and the seller nets

a payoff of θs. Moreover, it is important to note that I assume that types are drawn only once

at the beginning of the game.

C. Strategies and Equilibrium

I now define histories, strategies, and equilibrium. Informally, a history is a record of all

previous reserve prices since any bid would have ensured that the game ended. A strategy for the

seller is then a map from histories to reserve prices and a strategy for buyers is a mapping from

histories and current reserve prices to a decision to wait or which bid to submit. Meanwhile, an

equilibrium imposes that beliefs are derived using Bayes rule and that players are sequentially

rational.

I first define histories. In period 0, assume a set of histories H0 with a single null history. In

period t = 1, 2, . . ., however, a history ht details the preceding reserve prices i.e., ht = {pτ}t−1
τ=0.

The set of period t histories is Ht ≡ [0, 1]t.

Next, I define strategies. A seller strategy is a collection of functions (pt) ∀t, pt : Ht → [0, 1]

such that at each period t and history ht, pt(ht) denotes the reserve price that the seller posts.

Note that I assume that players follow pure strategies for exposition.3 It is possible to consider

behavioral and mixed strategies, but such extensions would be orthogonal to the point of this

paper.

I now define a buyer strategy. A strategy for buyer i consists of a collection of functions

(bit), ∀t, bt : Ht+1 × T → [0, 1] ∪ {wait}, such that at each period t, history ht, current reserve

price pt, and type τi, it holds that bit(τi, ht, pt) denotes a bid choice or a choice to wait. I assume

that a buyer that is indifferent between bidding and waiting will submit a bid and in the case

that a bidder is indifferent between multiple bids, he submits the highest possible bid. Next, I

assume a monotonicity requirement on strategies i.e., for each period t, type τi, history ht, and

price pt if bit(τi, ht, pt) ̸=wait, then for each period s ≥ t and history hs such that (ht, pt) ⊂ hs,

it holds that for each price ps ∈ [0, 1] bis(τi, hs) ̸=wait. This condition implies that strategies are

consistent with past decisions to participate in the auction. Lastly, beliefs are history dependent

3All functions are be assumed Lebesgue measurable. Furthermore, Liu et al (2019), Fundenberg, Levine, and Tirole

(1985), and others find that almost surely neither the seller or buyers play a mixed strategy.
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joint measures on (τi)
n
i=1.

Now that strategies and beliefs have been defined, I can define equilibrium. The paper

focuses of perfect Bayesian equilibrium (PBE) so as to not deviate from the preceding literature.

DEFINITION 1 (PBE): A Perfect Bayesian Equilibrium (PBE) is a collection of strategies,

(pt, (bit)), and beliefs such that for every period t and history ht

i. Given beliefs, strategies are sequentially rational

ii. Beliefs are derived via Bayes rule whenever possible.

III. Results

I now state my results. The paper’s main result is that equilibrium revenues are unique

and greater than immediately running an efficient auction, i.e. setting p0 = θs. I first present

three auxiliary results. First, I prove that buyers follow a threshold bidding strategy. This

means that buyers bid their valuation conditional on winning the good iff it lies above a time

dependent cutoff. Next, this result implies the second result: progressive pessimism. Pessimism

implies that in every period, prior beliefs likelihood ratio dominates their Bayes posteriors. This

technical result drives all subsequent results in the paper.

I lastly find bounds on equilibrium revenues. First, I prove that an upper bound on equilib-

rium revenues. In every period, the seller cannot improve upon immediately running the revenue

maximizing, static auction given his current beliefs and keeping the good if it fails to sell. Next,

I find a revenue floor that is higher than immediately running an efficient auction and does not

account δ or the frequency of future re-offerings. In each period, the seller’s revenues are greater

than running any auction where upon learning that the item failed to sell, buyers lower their

valuation enough to justify that the seller keeps his good.

A. Auxiliary Results

Skimming Property. — The first auxiliary result states that buyers play a threshold strategy

in every equilibrium i.e., in every equilibrium, each player i participates in an auction iff i′s

valuation is above a history-dependent cutoff. This result imposes a tractable structure behind
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equilibrium beliefs. First define expectations given period t beliefs as Et[·] and each player i’s

valuations given his type τi and the public history until period t as

wit ≡ Et[u(τi, x−i)|τi, i wins].

This implies that player i’s time t valuation is the expected he expects to net conditional

on winning the auction. Note that when it is useful to specify the valuation as a function of

the history, I will write it as wit(ht) ≡ E[u(τi, x−i)|ht, τi, i wins]. Next, I can define a threshold

strategy.

DEFINITION 2 (Threshold Strategy): Buyer i is said to play a threshold strategy iff there

exists a collection of functions (uit), ∀t uit : Ht+1 → ℜ such that i bids his valuation in period t

and history ht if wit(ht) ≥ uit(ht); otherwise, i waits.

This definition states that buyer i follows a threshold strategy if he bids his valuation

conditional on winning provided that it lies above a cutoff. Otherwise, buyer i waits. Note that

buyers bid their valuation conditional on winning is a standard argument presented Myerson

(1981) and Krishna (2004). The following lemma characterizes buyers’ equilibrium behavior.

LEMMA 3 (Skimming Property): In every PBE, each buyer i plays a threshold strategy.

The proofs are in the appendix, but I sketch the argument below. For each buyer i, his type

(τi) is unverifiable. This implies that when i observes a type τi, he can implement the strategy

associated with observing type τ ′i without the possibility of being detected. This implies that

the difference in payoffs between participating in the auction relative to the payoffs he nets

from waiting must be increasing in buyer i’s current valuation. This establishes the skimming

property.

This result is key for two reasons. First, this result implies that there still exists negative

selection in the demand pool. This negative selection ensures that beliefs evolve as described

in the next auxiliary result. Secondly, if buyers’ decision to participate at auction follows a

cut-off rule as described above, then the following auxiliary results proceed regardless of the

auction protocols considered. How buyers bid and interact with each other is inconsequential

when it comes to characterizing learning from the item failing to sell. The auction format,
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nonetheless, matters since it determines who participates in the optimal, static auction available

to the seller. I delegate this discussion to the appendix to avoid the issue of presenting a general

auction format in the main text.

Principle of Progressive Pessimism. — The next result characterizes learning. Heuristically,

the seller and buyers become increasingly pessimistic regarding other buyers’ (IV) components

and valuations. This is the key insight to my main result. I first present a standard ordering on

distributions and state my result using such ordering. A CDF H[0, 1] likelihood ratio dominates

another CDF on G[0, 1] provided that the CDF G systematically gives higher weight to lower

realization of a random variable than H. The formal definition is the following.

DEFINITION 3 (Likelihood Ratio Dominance): Suppose that H[a, b], a < b, and G[a, b] are

CDFs admitting pdfs h ≫ 0 and g ≫ 0, respectively. Then, H likelihood ratio dominates G, i.e.

H ⊵G, if for each pair of x, x′ ∈ [a, b] such that x ≤ x′, it holds that

(4)
g(x′)

g(x)
≤ h(x′)

h(x)
.

This is a strong notion of stochastic dominance. It implies first- and second-order, hazard

and inverse hazard rate, stochastic dominance. Indeed, if one has a sequence of random variables

(xn) and for each n, it holds that the CDF of xn likelihood ratio dominate the CDF of xn+1,

then the sequence is stochastically decreasing, i.e. it is increasingly likely that one observes high

realizations as n increase and less likely to observe high realizations.

Next, define for each period t the CDFs Ft,Kt, and Ht as the equilibrium path beliefs

regarding each buyer’s interdependent value, private value, and valuation as of the beginning

of the period. Note that Ft(.), for example, refers to the seller or a buyer i’s beliefs regarding

buyer j ̸= i’s value xj . I now present the result.

THEOREM 1 (Progressive Pessimism): In every PBE, the expected valuations and types are

stochastically decreasing:

(5) ∀t, Ft ⊵ Ft+1, Gt ⊵Gt+1.
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I now state an immediate corollary, i.e. valuations and the expected dispersion of valuations

falls.

COROLLARY 4 (Expected Dispersion in Valuations Falls.): In every PBE and period t, the

dispersion in valuation falls, i.e. for every pair of types τ, τ ′, it holds that

(6) Et[|vt(τ)− vt(τ
′)|] ≥ Et+1[|vt(τ)− vt(τ

′)|].

Next, for every period t, buyer i, and type τi, it holds that vt(τi) ≥ vt+1(τi).

These results allow me to decompose learning in the current IV setting and compare it to a

setting with private values. Such comparison clarifies the role. For exposition, I focus on beliefs

regarding valuation, i.e. vit = vt(τi). First, let vt be the smallest valuation for which Ht(vt) = 1,

i.e.

vt ≡ inf{x ∈ [0, 1]|Ht(x) = 1}

Note that vt is non-increasing in t due to the skimming property. In every period t, agents

expect that buyers have valuations below vt and are distributed by the CDF Ht[0, vt].

If the item fails to sell, agents learn that buyers have a valuations below a cutoff ut+1 ≤ vt.

Note that in a comparable private value setting, the seller’s beliefs regarding buyer valuations in

period t+1 is given by the CDF Ht
Ht(ut+1)

[0, ut+1]. Next, every buyer further lowers their valuation

in response to their peers lack of trade and hence the maximum valuation in period t + 1 is

vt+1 ≤ ut+1. Figure II illustrates the decomposition described above.

The proof of theorem 1’s is inductive. Intuitively, when a buyer i observes that his peer

j ̸= i waited, he learns that vjt ≤ ut and expects that for each pair of values xj and x′j where

xj ≤ x′j , there exists more potential values θj for which the expected valuation of (xj , θj) lies

below vt than for realizations. Consequently, the probabilities ratio is non-increasing is xj . The

stochastic dominance discussed above follows immediately from this observation and argument

extends to beliefs regarding private values as well as for valuations.

Bound on Revenues. — I now derive bounds on equilibrium revenues. First, I define an upper

bound on revenues. In each period, I find that the seller cannot improve upon immediately
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(a) Intra-period Belief update.
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(b) Inter-temporal Belief Updating.
Figure II. : Equilibrium belief decomposition in every period t: Skimming, Progressive Pessimism, valuation re-assessment.

running the revenue maximizing auction given the information at hand and never re-offering his

good. Remember that re-offering his good is often sequentially rational. Next, I derive a lower

bound. Intuitively, I calculate the revenue maximizing auction after which the seller can commit

to keep his good.

First, suppose that after period t, the seller commits to his optimal continuation strategy.

What strategy would he pick? I show that the seller cannot improve upon immediately running

the static optimal auction given the information he holds in period t and keeping the good if

it fails to sell. If p∗t denotes the optimal, static auction’s reserve price, then the seller prevents

re-offering his good by setting ps = p∗t for every period s ≥ t with probability 1. Next, I derive

an expression for the revenues attained by a static auction. A static auction held in period t,

when beliefs are Ht[0, vt], and a reserve price of p ∈ [0, 1] nets the seller an expected revenue of

r(p,Ht) ≡ θs + Et[χ(v
2
t ≥ p){ϕ̄(v2t , Ht)− θs}]

where v2t is the second highest valuation among buyers and ϕ̄(x,Ht) are the ironed out

virtual values as given by the current distribution of valuations conditional on winning the

auction. Furthermore, the optimal static auction’s revenues are denoted as r∗t and satisfy

(7) r∗t ≡ max
p∈[0,1]

r(p,Ht).
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Next, I find a period 0 revenue floor. The seller may not be able to implement his revenue

maximizing auction and never re-auction his good, but there exist some auctions that the seller

could run in period 0 whereupon learning that the item failed to sell, buyers end up willing to

bid less than the seller’s valuation. First define valuations conditional on the seller running a

static auction in period 0 with a reserve price of p, buyers bid myopically, i.e. each buyer i bids

iff w0(τi) ≡ E[u(τi, x−i)|i wins] ≥ p, and yet the good remains unsold as

w0(τi, p) ≡ E[u(τi, x−i)|i wins, ∀j ̸= i, w0(τj) ≤ p].

I present the lower bound below.

DEFINITION 4 (Commitment Auctions): In every PBE, the price p ∈ [0, 1] defines a commit-

ment auction if for every type τi such that w0(τi) ≤ p, it holds that w0(τi, p) ≤ θs. Next, r0 is a

revenue floor that satisfies

(8) r0 = max
p∈[0,1]

r(p,Ht) s.t. ∀τ ∈ T , s.t. w0(τ) ≤ p, w0(τ, p) ≤ θs.

It should be noted that the set of such auctions is non-empty as p = θs is a commitment

auction. Next, denote the expected revenues from running an efficient auction in period 0 as re0

and the equilibrium revenues in period t as rt. Also, a CDF H[a, b], for a < b, is regular iff for

each x, the function x− [1−H(x)]/h(x) is increasing. I now state the subsequent theorem.

THEOREM 2 (Coase fails): In every PBE, revenues are below the optimal, static auction rev-

enues, i.e. ∀t, rt ≤ r∗t . Meanwhile, if H0(·)[0, 1] is a regular distribution, then the seller’s

equilibrium revenues are strictly higher than immediately running an efficient auction, namely

re0 < r0 ≤ r0.

I first make some comments before sketching the proof. The revenue floor is independent of

how often the seller offer his good and the discount factor. Therefore, the Coase conjecture does

not hold in this setting. Lastly, this lower bound need not bind when types are two-dimensional.

However, in the accompanying paper, Ramos-Mercado (2022), I prove that when the types are

one-dimensional, this revenue floor is binding.
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The proof proceeds in three steps. First, suppose that after some history, the seller offers and

commits to a dynamic, trade mechanism that only depends on each buyer’s current valuation.

This mechanism consists of an allocation and payment rules as well as a time when trade and

payoffs are realized such that the outcome can be implemented with second-price auctions with

reserve prices. I show that the seller might as well focus on mechanisms in which he only trade

immediately and if the item fails to sell, the seller keeps the item from henceforth.

The argument follows a replication argument. Fix some individually rational and incentive

compatible, dynamic mechanism. I construct an alternative mechanism where the period in

which he sells the good is either immediate or never. The proof further shows that such mech-

anism yields the seller the same revenues as the initial mechanism. Consequently, it is without

loss of generality to focus on this restricted class of mechanisms rather than a larger class.

B. Main Result

The previous results leave three questions unanswered. First, under what conditions are

equilibrium revenues with limited commitment equal to revenues with full commitment? Second,

are there multiple equilibria? Otherwise, it is possible for learning to mitigate revenue losses

in some equilibria and not in others. Lastly, when the seller cannot implement his revenue

maximizing auction, what happens?

The answers to these questions are as follows. First, the equilibrium is essentially unique,

so multiplicity of equilibria does not undermine revenue predictions. Next, I find sufficient

conditions ensuring that the seller implements his optimal strategy. Otherwise, I find that the

game effectively ends in finite time. This means that the seller stops eliciting bids almost surely

by a finite time horizon and its formal definition is below.

DEFINITION 5: The game essentially ends in finite time iff there exists a deterministic period

T < ∞ such that buyers almost surely wait in every period t ≥ T and PBE.

I can now state the paper’s main theorem.

THEOREM 3: The PBE is essentially unique and the game essentially ends in finite time.

Furthermore, revenues equal the optimal, static auction revenues, i.e. r0 = r∗0,if the following

condition holds:for every type τi such that w0(τi) ≤ p∗, it holds that
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(9) w0(τi)− v(τi, p
∗) ≥ 1−H0[w0(τi)]

h0[w0(τi)]
.

I now discuss theorem 9. First, the seller commits to the static, optimal auction iff all

excluded buyers from the optimal auction demand smaller information rents than the loss of

valuation due to learning. Otherwise, revenues with limited commitment are lower than revenues

with full commitment. However, the seller stops eliciting bids in finite time.

The proof has two steps. First, there exists a deterministic period T < ∞ such that in

all PBE, the seller can fix prices after period t. Intuitively, the seller is sequentially rational,

impatient, and can always implement his revenue maximizing commitment auction. But as

the item fails to sell, the maximum valuation falls enough by period T such that it is optimal

to implement an auction that prevents re-offerings. The second part of the proof characterizes

precisely when the seller implements his optimal strategy. I use the virtual value characterization

of the optimal reserve price and the observation that no buyer, in period 1, should be willing to

bid more than the seller’s valuation.

IV. Bid Shading Reduction

Progressive pessimism implies that as buyers learn from each other, valuations fall and the

seller becomes increasingly pessimistic about finding a buyer who values the good more than

himself. I also find that pessimism ensures that the winner’s curse is ameliorated over time.

The winner’s curse is the observation that buyers do not bid their valuation but their valuation

conditional on winning the good. In this section, I show that as the game progresses the ratio

between the two increases.

I return to the model from section I and, for exposition, assume that the seller can only offer

his good twice. This allows me to derive the optimal reserve prices via backwards induction in

appendix B. I then derive valuations, bids (valuations conditional on winning), and the ratio

between the two. This mechanical calculation illustrates the result.

Intuitively, each buyer expects that they are more likely to win when the common value is

low rather than high. But as the game progresses, each buyer expects that it is increasingly

likely that they outbid their peers, regardless of the q. Winning the auction hence becomes

increasingly uninformative of q and bids stop reflecting such considerations.
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A. Social Learning in Sequential Second-Price Auctions

Deriving Valuations. — I now derive the valuations of buyers observing good news. Notice

that buyers observing bad news will not bid, so I only discuss their valuations in appendix B.

Suppose that buyer i observed good news and a private value of θi in period 0, then his valuation

is vi0 = θiE0[q|xi = 1]. Since q ∈ {0, 1}, it holds that E0[q|xi = 1] = Pr0(q = 1|xi = 1) and

Bayes rule implies that his valuation is

vi0 = θi

[
λπ

λπ + (1− λ)(1− π)

]
= θi

[
λ̂π̂

λ̂π̂ + 1

]

for γ̂ ≡ γ/(1− γ) and γ = π, λ. The second equality derives Pr(q = 1|xi = 1) as a strictly

increasing function of the likelihood ratio, i.e. r0(xi = 1) ≡ Pr(q = 1|xi = 1)/Pr(q = 0|xi =
1) = π̂λ̂ and

Pr(q = 1|xi = 1) =
r0(xi = 1)

r0(xi = 1) + 1
.

Next, let us derive buyer i’s valuation in period 1. If the item failed to sell in period 0,

buyer i learns that other buyers j ̸= i either received bad news (i.e. xi = 0) or observed good

news (xj = 1) and a private value below a cutoff of θ1 ∈ [θs, 1]. As in section I, buyer i believes

that his peers waited, conditional on q, with probability w(θ1, q)
n−1; where w(θ1, q) was derived

in equation I.C. This implies that the likelihood ratio in period 1 equals to

r1(xi = 1) ≡ Pr(q = 1|xi = 1, no bids)

Pr(q = 0|xi = 1, no bids)
= π̂λ̂

[
w(θ1, 1)

w(θ1, 0)

]n−1

≤ r0(xi = 1).

The inequality above follows from the fact that the good is more likely to not sell when q

is low rather than low. Consequently, buyer i updates his valuation to vi1 = θiE1[q|xi = 1] via

Bayes rule and it equals to

vi1 = θi

[
r1(xi = 1)

r1(xi = 1) + 1

]
≤ vi0.

Deriving Bids. — I now derive each buyer’s potential bid in each period t = 0, 1. If buyer

i submits a bid in period 0, he expects to win a higher probability when q = 0 rather than
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q = 1. In equilibrium, buyer i internalizes this observation and bids his valuation conditional

on winning the good, i.e. he bids

bi0 = wi0 ≡ θiE0[q|xi = 1, i wins].

As before, E0[q|xi = 1, i wins] = Pr0[q = 1|xi = 1, i wins], but it is not immediate what

this belief happens to be. Deriving the likelihood ratio, however, makes this clear.

I now derive the probability that i wins the auction given q. Buyer i wins iff he outbids

each peer j ̸= i. In appendix B, I show that buyers observing bad news wait; meanwhile, buyers

observing good news follow a bidding strategy that is strictly increasing in the private value.

This means that if buyer i, observing good news, outbids his peer j ̸= i it is either because j

observed bad news or a private value θj (≤ θi). Furthermore, if the maximum private value held

by buyers who observe good news is θ̄, then the probability that i wins the auction, given q, is

W (θ̄, θi, q) ≡ Pr(xi = 0|q) + Pr(xi = 1|q)Pr(θj ≤ θi|θj ≤ θ̄) =


(
θi
θ̄

)
π + (1− π) if q = 1

(
θi
θ̄

)
(1− π) + π if q = 0.

Since π ∈ (1/2, 1),i is more likely to win when q is low rather than high. Also, in period 0,

it was assumed that θ̄ = 1, so buyer i’s expected odds of winning are W (1, θi, q) for a given q.

Hence, the period 0 likelihood ratio conditional on winning, i.e. r0(xi = 1, i wins), is

r0(xi = 1, i wins) = r0(xi = 1)

[
W (1, θi, 1)

W (1, θi, 0)︸ ︷︷ ︸
(< 1) Winner’s Curse.

]n−1

This implies that buyer i is willing to bid

bi0 = θi

[
r0(xi = 1, i wins)

r0(xi = 1, i wins) + 1

]
.

Next, let us calculate buyer i’s bid in period 1. Buyer i still bids his valuation conditional

on winning the good, but he now knows that if buyer j ̸= i observed good news, then θj ≤ θ1

with probability 1. This means that θ̄ = θ1 ≤ 1 and the odds that buyer i outbids each buyer

j is W (θ1, θi, q) given q. Since private values are q-conditionally independent, buyer i arrives at

the following likelihood ratio
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r1(xi = 1, i wins) = r1(xi = 1)

[
W (θ1, θi, 1)

W (θ1, θi, 0)

]n−1

≤ r1(xi = 1).

Consequently, buyer i bids bi1 = wi1 ≡ θE1[q|xi = 1, i wins] which equals to

bi1 = θi

[
r1(xi = 1, i wins)

r1(xi = 1, i wins) + 1

]
.

The following result follows from the observation that the ratio of likelihood ratios (i.e.

rt(xi = 1, i wins)/rt(xi = 1)) increases over time:

r1(xi = 1, i wins)

r1(xi = 1)
≥ r0(xi = 1, i wins)

r0(xi = 1)
.

B. Bid Shading falls.

I now prove that bid shading falls over time, i.e. bit/vit is increasing in t. First, if buyer i

has a private value of θi, then for each period t = 0, 1 one can derive the ratio bit/vit as

(10)
bit
vit

=
rt(xi = 1, i wins)

rt(xi = 1)

[
1 + rt(xi = 1)

1 + rt(xi = 1, i wins)

]
=

1 + rt(xi = 1)[W (θt,θi,0)
W (θt,θi,1)

]n−1
+ rt(xi = 1)

.

The second equality follows from unraveling the likelihood ratio conditional on winning the

good. Next, in period t = 1, the likelihood ratio equals the likelihood ratio in period t − 1

times the relative odds that the item fails to sell in period t− 1 as a function of q. Meanwhile,

the period 1 likelihood ratio conditional on winning can be unraveled in a similar fashion by

embedding the fact that the good failed to sell in period 0. If one plugs these observations into

equation 10, it holds that

(11)
bit
vit

=
1 + rt(xi = 1)[W (θ1,θi,0)

W (θ1,θi,1)

]n−1
+ rt(xi = 1)

=

[w(θ1,0)
w(θ1,1)

]n−1
+ rt−1(xi = 1)[W (θ1,θi,0)w(θt,0)

W (θt,θi,1)w(θ1,1)

]n−1
+ rt−1(xi = 1)

.

Observe that the item is less likely to not sell when q = 0 than when q = 1 in every period

t, this means that w(θt, 0) ≥ w(θt, 1) for each period t. Similarly, buyer i is more likely to win

when q = 0 than when q = 1 in every period t, so W (θt, θi, 1) ≤ W (θt, θi, 0). This implies that

the following function is non-increasing:
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∀x ≥ 0, f(x) =
x+ rt−1(xi = 1)

x
[W (θt,θi,0)
W (θt,θi,1)

]n−1
+ rt−1(xi = 1)

.

is non-increasing. Thus, it holds that for t = 1

(12)
bi1
vi1

≥ 1 + r0(xi = 1)[W (θ1,θi,0)
W (θ1,θi,1)

]n−1
+ r0(xi = 1)

≥ 1 + rt−1(xi = 1)[W (1,θi,0)
1,θi,1)

]n−1
+ rt−1(xi = 1)

=
bi0
vi0

This last inequality states the main result of this example, i.e. bids relative to valuations

increase over time. The following lemma summarizes this result.

LEMMA 5: If buyer i observes good news ( xi = 1) and a private value θi ≤ θ1, then
bi1
vi1

≥ bi0
vi0

.

Figure IIIb decomposes how bid shading falls over time. First, valuations among buyers

fall in period 1. Potential bids also fall, but the fall by less than the valuations. The left-hand

panel depicts in gold the trade surplus that the seller cannot extract from buyers in period 0.

Meanwhile, the right-hand panel decomposes this region in the parts. The remaining gold region

depicts the surplus loss since no buyer both observed good news and a private value which would

have compelled him to bid in period 0. The purple region then describes surplus loss due to

learning; whereas the red region illustrates the trade surplus that the seller cannot extract from

buyers in period 1.
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(b) Bids as a function the private value in t = 0, 1.
Figure III. : Equilibrium bidding among buyers observing good news, i.e. xi = 1, as a function of the private value.
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V. Related Literature

The Coase Conjecture (1972) illustrates the implications of limited commitment in a stylized

manner. Intuitively, patient, high valuation buyers are more likely to buy the good than their

low valuation peers. Thus, a sequentially rational monopolist sequentially lowers prices to trade

with his remaining buyers. But this pricing behavior persuades some high valuation buyers

to delay their purchase decision: thus, lowering profits. Coase conjectured that as the seller

interacts with his buyers ever more frequently, then his price converges his marginal cost.

Indeed, Bond and Samuelson (1984), Gul et al (1986), Kahn (1986), and others corroborate

the Coase conjecture in stationary equilibria. Subsequent papers, however, illustrate that the

conjecture is not robust when either the seller follows a non-stationary strategy or when one

slightly perturbs the underlying setting. Ausubel and Denekere (1989) prove that there exist non-

stationary equilibria where the seller sustains a gradually declining price schedules and attains

profits that are arbitrarily close to the static monopoly rents attainable under full commitment.

Intuitively, agents posit a candidate price schedule and if the seller ever posts a price different

from the one dictated by the schedule in question, then buyers expect that the subsequent sub-

games follow a Markov equilibrium. These Markov equilibria net the seller no profits in the

continuous time limit. Thus, the seller prefers sticking to the candidate price schedule if he

interacts with buyers sufficiently frequently.

Board and Pycia (2014), meanwhile, added outside options for buyers and found that all

equilibria are payoff equivalent to fixing prices equal to the one-shot monopoly price. Heuris-

tically, equilibrium prices are greater than the lowest value among remaining buyers: thus,

remaining buyers with relatively low valuations are better off exiting the market than waiting

and expecting no consumer surplus in the future. This leads buyers to either immediately pur-

chase the good or exit the market. Thus, the seller can fix prices since he has no remaining

buyer with whom to trade.

Fundenberg et al (1987) also find that the Coase conjecture fails when seller have an outside

option, e.g. consume the good himself or sell it to another buyer. The seller only offers his good

until a finite, terminal period since he eventually expects that the rents that he can extract from

buyers may not compensate for him forgoing his outside option. This result differs markedly
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from my result because the seller offers his good to multiple buyers at the same time, via an

auction. I too find that the seller eventually becomes sufficiently pessimistic and decides to not

re-offer his good but learning among buyers further distorts this intuition twofold. First, learning

among buyers further lowers the total surplus above and beyond what the seller learned from

his peers. Secondly, social learning allows the seller to extract an increasing share of the surplus

among the buyers in question. Further work by McAfee and Wiseman (2008), Madarász (2021),

Bagnoli et al (1989), von der Fehr and Kuhn (1995), Montez (2013), Feinberg and Skrypacz

(2005), Karp (1993), Ortner (2017) and others similarly find small that environment preventing

the Coase conjecture.

Next, the Coase conjecture generalizes to auctions. Vincent and McAfee (1997) first showed

that when the seller values the good strictly less than all buyers, there exists an essentially

unique equilibrium, where the seller runs a sequence of standard auctions with declining reserve

prices until a finite, terminal period in which he ensures that the item is sold. Their paper,

however, assumes a ”gap” case in a private value setting. This means that the seller who values

the good the least values the good more than the seller.

Liu et al (2019) then studied the no gap case and showed that when there are at least 3

buyers and for most independent private value environments with 2 buyers, the seller might as

well immediately run an efficient auction in the limit when the time between transactions go to

zero. They show that with multiple buyers, one cannot construct a reputational equilibrium—as

in Ausubel and Deneckere (1989)—where the seller can profitably screen his buyers and find that

the unique level of profit are those attainable by the auction mentioned above.

The intuition behind the Coase conjecture further extends to contracting settings—see

Skreta (2006, 2015), Doval and Skreta (2021), and others. When a principle commits only

to short term contracts and interacts repeatedly with agents holding private information, he

extracts information rents from his agents and changes the contracts offered. This, in general,

limits the principal’s ability to provide the agents with incentives and restricts implementable

outcomes. Doval and Skreta (2021) for instance show that these contracts can be characterized

via a generalized version of the Coase Conjecture. Meanwhile, Burzustowski et al (2021) finds

that allowing the principal to implement dynamic contracts that he can void at will, however,

allows him to avoid the Coase Conjecture.
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VI. Discussion and conclusion

A. Discussion

In this subsection, I discuss how changes to the primitives affect the paper’s results. I also

discuss how results extend to more general auction and non-auction environments.

Assumptions on Primitives: Buyers. — My main results disregarded several issues pertaining

preferences and the signal structure. I firstly assume that all random variables are drawn

independently from each other, but types can be, for instance, affiliated across buyers. In the

motivating example, see section I, this assumption allowed me to describe how each buyer learns

deduces information from each one of his peers separately. In general, each buyer learns from

the lack of bidding decisions of their peers, as a collective. This means that he updates his

beliefs cognizant of the way the signals are jointly drawn. Aside from this distinction, learning

among buyers would proceed as before.

The model further assumes symmetric buyers and this does not represent many interesting

settings. For example, an art collector’s valuation is more responsive to a painting’s resale value

than the director of a museum since the museum profits from exhibiting the piece rather than

reselling it. In equilibrium, however, there still exist negative selection in the demand pool and

hence the learning dynamics described herein persist.

Assumptions on Primitives: Seller. — A less innocuous assumption is that the seller’s valua-

tion is constant and in the interior of potential buyer valuations. This assumption avoids three

issues. First, if all buyers value the good more than the seller for certain, i.e. θs = 0, then the

seller never stops re-offering his good in finite time. Indeed, this may seem like an important

case, but I claim that it is pathological. First, for every value θs < 0, this is a “gap” case and an

argument like the one presented in Fundenberg, Levine, and Tirole (1985) shows that the seller

stops re-auctioning his good in finite time. Meanwhile, I already established this precise issue

when θs > 0.

Next, the seller’s valuation may depend on a buyers’ interdependent components. For

example, the seller may care about his artwork’s resale value at a different auction. I find that
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the results herein still hold when the seller’s valuation for the good are not as responsive to the

resale value as buyers. This too can be understood with the art auction example. The seller

may resale his good at the same art markets as his buyers, but he can also run a private sale.

Therefore, his valuation for the good is not as responsive to a low resale value at an alternative

public offering.

Lastly, the seller could also observe an interdependent value component, making him an

informed principal. For example, the seller may be privately informed of the artwork’s resale

value and his reserve price may signal his private information. I disregard this possibility,

because it adds a significant layer of complexity that obfuscates learning among buyers. Such

considerations are important, and I plan to study this precise question in my future work.

Assumptions on the auction procedure.. — The paper further assumes that the seller runs

second-price auctions. I make this assumption to simplify exposition and to compare results

with the literature, but if the decision to participate in an auction result in negative selection

among buyers, the results follow. The auction format only matters in as far as determining who

would be excluded from the optimal static auction. Appendix A.A3 presents a broad collection

of auction in which there exist negative selection in the demand pool and hence my result can

be extended to those settings.

Is there something special about auctions?. — The last point of clarification is that the

results herein persist beyond auction settings. In appendix C, I consider a durable good market

with a single seller and a continuum of buyers with a common value. I prove that learning among

buyers contravenes the Coase conjecture in stationary settings. This is because buyers observe

the mass of consumers who previously purchased the good and this eliminates all dispersion in

valuations. Thus, the seller can extract all rents from the remaining buyers.

B. Conclusion

The Coase conjecture predicts that limited commitment lowers profits since the seller serially

auctions his good. I, however, find that serial re-offerings of items that fail to sell is empirically

rare, so Coasian dynamics unlikely to be salient. In this paper, I proved that this behavior
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can be rationalized in settings with interdependent IV values. Moreover, it is possible for a

sequentially rational seller to attain his maximum expected revenues with full commitment.

Intuitively, learning among buyers serves as an endogenous commitment device. When the

seller runs an auction and the good does not trade, the seller and buyers first learn that buyers

had lower valuations than expected. Each buyer further expects that their peers’ low valuations

were informed, at least partially, by interdependent value, private information. Consequently,

buyers lower their valuation for the good and this limits, or outright prevents, items from being

serially re-offered. When valuations fall by more than buyer’s initial information rents, the seller

prevents his optimal strategy with full commitment.

I also characterize what happens when the seller cannot commit to his revenue maximizing

auction. The seller stops offering his good in finite time, he extracts an increasing share of the

trade surplus over time, and his equilibrium revenues are greater than immediately running an

efficient auction. I further show that bid shading falls over time. Intuitively, buyers expect it to

be increasingly likely that they outbid their peers regardless of their peer’s private information.

Winning the item at auction, therefore, becomes an increasingly uninformative event and buyers

respond by bidding an increasing share of their valuation.

My results, lastly, illustrate that the received Coasian logic is incomplete. The Coase con-

jecture implies that a sequentially rational seller screens his buyers, which results in delayed

market participation and lower profits. In IV settings, however, buyers also screen each other

and this that as the seller learns from his buyers, he offers buyers terms of trade that increasingly

favor remaining consumers. When types are interdependent, however, buyers also lower their

willingness to pay, the dispersion in valuations falls, and the seller can extract an increasing

share of the remaining trade surplus. Consequently, learning among buyers limits re-offering

and the payoff relevance of sequential rationality.

References

Akbarpour, Mohammad and Shengwu Li. 2020. Credible Auctions: A Trilemma. Econometrica

(Econometrica) 88(2): 425–467.

Ashenfelter,Orley. 1989., How Auctions work for Wine and Art..Journal of Economic Perspec-

tive. 3(3):23-36.



30 Learning to Commit. November 20, 2022

Ashenfelter,O., K. Grady. 2003., Auctions and the Price of Art.Journal of Economic Literature.

16:763–78.

Ausubel, Lawrence, and Raymond Deneckere. 1989. Reputation in Bargaining and Durable

Goods Monopoly. Econometrica 57(3):511-31.

Bagnoli, Mark, Stephen Salant, Joseph E. Swierzbinski. 1989. Durable Goods Monopolies with

Discrete Demands. Journal of Political Economy 97(6): 1459-1478.

Beggs, Alan and Kathryn Grady. 2009. Anchoring Effects: Evidence from Art Auctions. Amer-

ican Economic Review 99(3):1027–39.

Bergemann, Dirk, Stephen Morris, and Satoru Takahashi. 2012. Efficient Auctions and Inter-

dependent Types. American Economic Review: Papers and Proceedings 102(3): 319–324.

Bergemann, Dirk, Benjamin Brooks and Stephen Morris. 2020. Countering the winner’s curse:

optimal auction design in a common value model. Theoretical Economics 15): 1399–1434.

Board, Symon and Marek Pycia. 2014. Outside Options and the Failure of the Coase Conjecture.

American Economic Review 104(2): 656–71.

Thomas Brzustowski, Alkis Georgiadis-Harris and Balazs, Szentes. 2021. Smart Contracts and

the Coase Conjecture. Working Paper.

Bond, Eric W., and Larry Samuelson. 1984. Durable Good Monopolies with Rational Expecta-

tions and Replacement Sales.. RAND Journal of Economics 15 (3): 336–345.

Bulow, Jeremy and Paul Klemperer.1996. Auctions versus Negotiations. American Economic

Review 86(1): 180-194.

Coase, Donald. 1972. Durability and Monopoly. Journal of Law and Econ 15(1):143-9.

Doval, Laura and V. Skreta. 2021. Mechanism Design with Limited Commitment.. Working

Paper.

Ekelund Jr.,Robert B., John D. Jackson, and Robert D. Tollison. 2017. The Economics of

American Art: Issues, Artists and Market Institutions.

Feinberg,Yossi, and Skrzypacz, Andrzej. 2005. Uncertainty about Uncertainty and Delay in

Bargaining.. Econometrica 73(1): 69–91.



JD R-M Learning and Commitment 31

Foster’s Solicitors. 2017. Modern Method Of Auction. fosters-solicitors.co.uk Fosters.

url: https : //www.fosters− solicitors.co.uk/insights/modern−method− of − auction/.

Fundenberg, Drew, David K. Levine, Jean Tirole. Incomplete information bargaining with out-

side opportunities. Quarterly Journal of Economics,Feb. 1987, Vol. 102, Issue 1, 37–50.

Fudenberg, Drew, David Levine, Jean Tirole . 1985. Infinite-Horizon Models of Bargaining

with One-Sided Incomplete Information. In: Roth A Game Theoretic Models of Bargaining.

Cambridge, UK and New York: Cambridge University Press: 73-98.

Fudenberg, Drew and J. Tirole. 1991. Game Theory. Cambridge, MA, MIT Press: 407-8.

Grant, Daniel. 2010. The Auction World’s Buy-Ins and Post-Sales. huffpost.com. Huffington

Post. url: https : //www.huffpost.com/entry/the− auction− worlds− buy − in.

Gul, Faruk, Hugo Sonnenschein, and Robert Wilson. 1986. Foundations of dynamic monopoly

and the Coase conjecture. Journal of Economic Theory 39(1): 155-190.

Haile, Phillip A. 2003. Auctions with private uncertainty and resale opportunities. Journal of

Economic Theory (JET) 108: 72-110.

Charles Kahn. 1986. The Durable Goods seller and Consistency with Increasing Costs. Econo-

metrica 54(2):275-294.

Karp, Larry S. 1993. Monopoly extraction of a durable non-renewable resource: failure of the

Coase conjecture. Economica:1-11.

Kremer, Illan. 2002. Information Aggregation in Common Value Auctions. Econometrica

70(4):1675-82.

Liu, Qingmin, Konrad Mierendorff, Xianwen Shi, and Weijie Zhong. 2019. Auctions with Lim-

ited Commitment. American Economic Review 109 (3): 876-910.

Liu, Qingmin, Konrad Mierendorff, Xianwen Shi. 2018. Coasian Equilibria in Sequential Auc-

tions. Unpublished Working Paper.

Liu, Henry. 2022. Robust Predictions in Coasian Bargaining. American Economic Review: In-

sights 4(2): 209-22.
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One-shot Benchmark.

I return to the setting in section I and characterize the revenue maximizing, static auction.

First, I derive the optimal, symmetric bidding strategy. Next, I state the seller’s revenue as a

function of his chosen reserve price and derive the optimal reserve price p∗.

A1. Symmetric Bidding Strategy.

In this subsection, I prove that buyer participating in the auction bid their valuation con-

ditional on winning the good in the unique, symmetric equilibrium. Note that the seller picks

price p ≥ θs; otherwise, he accepts payments for his good that are below his valuation with a

strictly positive probability. This implies that only buyers observing good news bid.

I first derive the valuation of a winning buyer. Suppose that the seller posted a price of p,

buyer i bid b, and i wins. Then, if buyer i expects that only his peers j ̸= i observing good

news submit bids b(θj), for some strictly increasing function b, then the initial probability that

i wins conditional on q is

w(b−1(b), θ∗, q) =


πb−1(b) + (1− π) if q = 1

(1− π)b−1(b) + π if q = 0.

Since conditional on q, (θi, xi) are drawn iid, it holds that the odds that buyer i wins

is w(b−1(b), θ∗, q)n−1. By Bayes rule, it then implies that buyer i’s valuation, conditional on

winning is

wi = θi

[
λπw(b−1(b), θ∗, 1)

λπw(b−1(b), θ∗, 1) + (1− λ)(1− π)w(b−1(b), θ∗, 0)

]
.

Note that for a strategy b(·) to form in equilibrium, it must be the case that the optimal

bid is b(θi) and hence his valuation conditional on winning is
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wi = w(θi) = θi

[
λπw(θi, θ

∗, 1)

λπw(θi, θ∗, 1) + (1− λ)(1− π)w(θi, θ∗, 0)

]
.

Next, let Φ(·) denote the distribution of the second highest valuation private value condi-

tional on receiving good news, then each buyer i’s payoff from bidding b ∈ [p, b(1)] is

r(b) =

∫ b−1(b)

w−1(p)
[w(θi)−max{p, b(y)}]dΦ(y).

This means that the optimal bid must satisfy the first order condition, which implies that

(A1) 0 = r′(b) =
w(θi)− b(b−1(b))]

b′(b)]
=

w(θi)− b

b′(b)]
.

and in equilibrium B = b(θi). Hence, the equilibrium condition implies, as desired, that

b(θi) = w(θi).

This implies that the only strictly increasing bidding function that can be sustained in

a symmetric, monotone equilibrium is to bid one’s valuation conditional on winning. In the

following section, I use this observation to derive the seller’s problem.

A2. Optimal Reserve Price.

I now state and solve the seller’s problem. Rather than picking p∗ the seller might as well

pick θ∗ such that p∗ = w(θ∗).

Suppose that the seller picks a value θ and m ∈ {0, 1, · · · , n} buyers observe good news.

Then the seller expects to keep his item with odds θm and to net a payoff of

r(θ,m) = mθ(1− θ)θn−1 +

∫ 1

θ
m(m− 1)xm−1(1− x)dx+ θmθs

Next, the odds of m buyers receiving good news are λ̃(m) =
(
n
m

)
[λπm(1 − π)n−m + (1 −

λ)(1 − π)mπn−m]. This implies that the seller’s expected revenue from the choice of θ is the

expected revenue of r(θ) = λ̃(m)r(θ,m). Lastly, the seller’s optimal choice solves maxθ∈[0,1] r(θ).
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A3. Contracts, For Online Publication

In this subsection, I present the terms of trade that the seller may offer buyers. The auction

format is fixed, i.e. the protocol determining how buyers who participate in the auction interact

with each other. The seller, however, picks who wins the good and how much the winner pays

subject to the allocation rule being implementable by an equilibrium.

The resulting extensive form game satisfies the following conditions. First, if a buyer decides

to not participate in the auction, then he neither wins the good nor makes a payment. On the

other hand, if at least one player decides to participate in the auction, the item sells to whichever

buyers holds the highest valuation at a price that is incentive compatible. Lastly, I assume that

buyers are treated symmetrically, i.e. if two buyers have the same valuation, then they expect

to win the auction with equal probabilities and to make the same expected payment.

Auction Format. — I assumed that the seller runs second-price auctions; is this necessary?

My result holds if there exist negative selection among buyers choosing to participate in the

auction. I now present a general auction setting in which my results persists. First, I model the

auction procedure as a particular type of extensive form game that I call an ”auction format”.

Next, I assume that the seller gets to pick a particular kind of indirect contract allowing that

must form an equilibrium in the auction format.

I first define the set of outcomes. An outcome is either a buyer who wins the good and the

payment he makes or a failure to trade, i.e. let the set of buyers be I, then the set of outcomes

is

(Set of Outcomes) X ≡ {(i, pi)|i ∈ I, pi ∈ ℜ} ∪ {failure}.

Note, the outcome x = failure means that no buyer won the good. Next, I define the auction

format.

DEFINITION 6 (Auction Format, is an extensive form game): An auction format is a tuple

Γ ≡ {H,⪰, ρ, A,A, (Ii)i∈I} consisting of

i. A game tree (H,⪰) with initial history ĥo,
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ii. The set of terminal histories is Z(⊂ H) such that #X = #Z,

iii. A function assigning buyers to non-terminal histories: ρ : H−Z → 2I −{∅}. This function

denotes who get to take an action when.

iv. A set of acts A and I assume that [0, 1] ⊂ A,

v. A map from non-terminal histories to acts feasible at the history in question: A : H−Z →
2A − {∅},

vi. In the initial period, buyers have a participation decision: i.e. ρ(ĥo) = I and for each buyer

i, it holds that A(ĥo) = {0, 1} such that if a buyer i plays 1, then they succeeding outcomes

is not in {i} ∪ ℜ and i does not play in a subsequent non-terminal history.

vii. For each buyer i, there exists a collection of measurable information sets Ii that are well

defined, i.e. for each set Bi ∈ Ii and pair of histories h, h′ ∈ Bi, it holds that A(h) = A(h′).

viii. I assume that the game has perfect recall and a PBE.

This definition allows for the second and first price as well as English auctions. Next, I

define a strategy to the game above.

DEFINITION 7 (Behavioral Strategy): A (behavioral) strategy for buyer i is a measurable func-

tion σi : T × I → ∆(A) such that for every set Bi ∈ Ii and type τ ∈ T , it holds that

suppσi(τ,Bi) ⊂ A(hi) for some history hi ∈ Bi. Note that from henceforth, I denote the set of

actions directly as a function of his information set.

I can now define a PBE. Note that this is important since the seller picks an equilibrium of

the game.

DEFINITION 8 (PBE): Given a function g ≡ (q, p) : Z → X , a PBE is a collection of behav-

ioral functions (σi) and beliefs such that for every set buyer i, set Bi ∈ Ii and type τ ∈ T , it

holds that σi(τi, Bi) solves

(A2) ui(τi, Bi) = max
a∈B⟩

E[u(τ, x−i)|Bi, i wins]E[q[a, σ−i]|Bi]− E[p[a, σ−i]|Bi]

where q(·) denotes the expected probability that buyer i wins the good, p(·) the payment he makes,

and the expectations are made given beliefs.
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The next subsection, I allow the seller to pick an outcome function g(·) given a fixed set of

constraints. The seller implicitly picks an indirect mechanism that must form an equilibrium in

the extensive form game in question.

Terms of Trade. — I now define a set of contracts that the seller can offer buyers. The seller

announces a rule g(·) denoting who wins the good and how much the winner pays. Meanwhile,

each buyer i either reports a type τi or decides to not participate by reporting ∅. For what

follows, assume that beliefs are given by β = {(Fi,Ki)} where Fi is CDF denoting each buyer

j ̸= i’s beliefs of xi; whereas Ki denote beliefs regarding the private value θi. Next, define a

buyer i’s valuation given beliefs β and a type τi as

v(τi, β) = Eβ[u(τ, x−i)|τi].

I now define the terms of trade.

DEFINITION 9 (Terms of Trade): Given beliefs β = {(Fi,Ki)}, the terms of trade are a triple

m ≡ (q, π, p) consisting of a minimal trading valuation p ∈ [0, 1] as well as an allocation and

transfer rule pair (q, π) : (T ∪ {∅})n → [0, 1]n × ℜn such that for every collection of reports

r̃ ≡ (rj), it holds that

i. qi(r̃) ∈ [0, 1] is the probability i wins and πi(r̃) ∈ [p,∞) i’s payment,

ii. Buyers who abstain or have valuations below p neither win or make transfers: for every buyer

i report ri = ∅ or ri = τi such that v(τi, β) < p, it holds that qi(∅, r̃−i) = πi(∅, r̃−i) = 0, ∀ r̃−i,

iii. If a buyer reports a valuation above p, the good sells: For every collection of reports r̃, if

some buyer i reports ri = τi ∈ r̃ such that v(τi, β) ≥ p, then
∑

i∈I qi(r̃) = 1,

iv. The buyer with the highest valuation wins the good: Suppose that there exists a report

ri = τi such that v(τi, β) ≥ p, then define the set

(A3) W (r̃) = {i ∈ I : v(τi, β) ≥ v(τj , β), or rj = ∅∀ j ∈ I}

and for each buyer i ∈ W (r̃), let qi(r̃) = 1/#W (r̃),
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v. The mechanism can be implemented: there exists a strategy profile (σi) and a function g(·)
such that given g(·), (σi) is a PBE and the composition of (σi) and g implements m,

vi. The seller implements the mechanism in the revenue maximizing PBE: There does not exists

an alternative PBE (σ′
i) such that the expected revenue to the seller from implementing m

via (σ′
i) is strictly higher than implementing m via PBE (σi).

I now explain this definition. Terms of trade are an indirect mechanism denoting who wins

the good, how much each buyer pays, and who is excluded. They also satisfy the following con-

ditions. First, If a buyer reports a type associate with a valuation above a cutoff p, the item sells.

Second, the agent who values the good the most wins the auction. Note that this assumption,

in general, implies that an auction like Myerson (1981) is not feasible. Next, I assume that the

mechanism can be implemented via a mechanism in equilibrium and it maximizes the seller’s

revenues.

Note that the only lever controlled by the seller is the cutoff value p. The revenues as a

function of p when beliefs are β = {(Fi,Ki)} can be expressed as a function of the virtual values

of valuations, i.e. a distribution over v(τ, β) that is expected to have a CDF Hi for each buyer

i. Define the ironed out virtual value when beliefs over valuations are Hi as ϕ̄(·, Hi) and the

expected revenues is

r(p, (Hi)) = EH [max
i

χ(vi ≥ p)ϕ̄(vi, Hi)}] + θs
∏
i∈I

Hi(p)

for χ(·) is an indicator function.

I conclude this section noting that since the seller only manages the choice p and incentives

are increasing in valuation. Then, one can define a game where the seller still picks reserve prices

pt and buyers pick rules to participate in the auction. The resulting games will have negative

selection among buyers, so the results in this paper follow.

Two period version of toy model: Equilibrium Characterization

This section derives the equilibrium analyzed in section IV. Since actions are perfectly

observable and the game ends in period 1, all PBE are payoff equivalent to the equilibrium that

is derived via Backward induction in pure strategies.
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Period t = 1. — Suppose that the item remains unsold in period 1 and that agents expect that

the buyers observed bad news (i.e. xi = 1) or they observed good news but also private values

below a cutoff value θ1. The seller first picks a reserve price p1 ≥ θs and then buyers can decide

whether to participate.

Let us first characterize buyers’ decision to participate in the auction. Note that buyers

participating in the auction bid their valuation conditional on winning follows the same argument

as in the static auction case. Since the seller cannot re-auction his good in any subsequent period,

buyers follow a myopic participation rule, i.e. each buyer i participates in the auction iff bi1 ≥ p1.

Observe that bi1 was derived in the main text of section IV.

I now characterize the seller’s problem. The seller expects that for each reserve price p1 ∈
[θ1, 1], buyers with valuations conditional on winning that are greater than p1 participate in the

auction, i.e. each buyer i bids iff bi1 ≥ p1. Furthermore, bi1 = b1(θi) for a strictly increasing

function b1(·). This implies that the seller can might as well pick a private value θ2 ∈ [θs, θ1]

such that p1 = b1(θ2). The revenue from such choice is

(B1) r1(θ2) =

∫ θ1

θ2

b1(y)d
Φ(y)

Φ(θ1)
+ [λπ + (1− λ)(1− π)]

(
θ2
θ1

)n

θs

where Φ(·) is the distribution of the second highest valuation among buyers who receives

good news.The optimal choice solves

r1(θ1) = max
θ2∈[0,θ1]

r1(θ2, θ1).

Period t = 0.. — I now characterize the equilibrium in period 0. Assume that the seller picks a

reserve price p0 ≥ θs. I claim that there exists a cutoff value of θ1 ∈ [θs, 1] such that only buyers

observing good news and a private value above θ1 bid their valuation conditional on winning.

Buyers expect that the item may be re-auctioned in period 1 if the item fails to sell. Each

buyer i expects that if they forgo bidding in period 0, they can play in the following period.

If buyer i is further indifferent, he expects to win iff he is the sole bidder and his payoff is

b0(θ1)− p0. Meanwhile, if buyer i waits, then he expects to win in the subsequent history with

probability 1 and to pay the second highest valuation in that period or the subsequent reserve

price is he is the sole bidder. Buyer i’s indifference hence equals to
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b0(θ1)− p0 = δ

[
b(θ1, θ1)− p1[θ1]{λ1w(θ1, θ2(θ1), 1)

n−1 + (1− λ)w(θ1, θ2(θ1), 0)
n−1}−∫ θ1

θ2

b(y, θ1)dF2(y, θ1)

](B2)

where θ2(·), p1(·) are the seller’s policy functions in period 1 as a function of each choice

θ1 ∈ [θs, 1], F2(·, θ1) is the CDF given for the second higher private value given that all buyers

observing good news observed private values below θ1, let F (·, θ1) be the distribution for a given

buyer, and

b(θ, θi) ≡ θE[q|xi = 1, i wins,∀j ̸= i s.t.xj = 1, θj ≤ θ1].

I now study the seller’s problem. The seller might as well pick θ1 since equation B2 allows

me to derive a reserve price p0 = p0(θ1). The seller expects to either net the revenues from the

appropriate, second-price auction or to not sell and net the expected, discounted revenues from

an offering in the subsequent auction. Hence, the seller faces the following problem

(B3) r0 = max
θ1∈[0,1]

p0(θ1)[1− F (y, 1)]F (y, 1)n−1 +

∫ 1

θ1

∫ x

θ1

b0(y)dF2(y, 1)dF1(x, 1) + δr1(θ1)

where the function F1(·, 1) denotes the distribution of the highest valuation. Next, the

objective function is continuous and [0, 1] is compact. Therefore, there extreme value theorem

implies that there exists a solution to equation B3, an equilibrium is well defined, and there

exists a value θ1 as discussed in the main text.

Durable Goods Market, For Online Publication

Up to this point, I showed that interdependence precludes the Coase conjecture in auction

settings, but doe this insight persists in non-auction settings? The answer is yes. I present a

durable goods monopoly example in which interdependence allows the seller to contravene the

Coase conjecture in a stationary equilibrium.

A monopolist offers a durable good to a unit mass of consumers. Nature first draws a

common quality q such that ln q ∼ N(µ, σ) for (µ, σ̄) ≫ 0. Then nature privately informs each

buyer i a private signal xi = q + ϵi for ϵi ∼ N(0, σ̂), σ̂ > 0, such that for each pair of distinct
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buyers i, j, it holds that ϵi is pairwise independent of ϵj . At each period t = 0, 1, . . ., the seller

first announces a price pt ≥ 0. Buyers then decide the either purchase the good (and exit the

market) or wait. If a buyer purchases the good at a period t, at a price of pt, then his payoff is

δt(q − pt) for some common δ ∈ (0, 1).

I now define histories, strategies, and equilibrium. At each period t a history consists of

the set of past prices and share of buyers who purchased the good: i.e. ht = {ps,ms}t−∆
s=0 ∈

Ht ≡ ℜt
+ × [0, 1]t. Next, a seller strategy is a collection of functions (pt),∀t, pt : Ht → ℜ+

denoting the current price; meanwhile, I an anonymous buyer strategy is a collection of functions

(ct),∀t, ct : Ht × ℜ × ℜ+ → [0, 1] where for each tuple (ht, xi, pt), ct(ht, xi, pt) denotes the

probability that the buyer purchases the good conditional on not previously purchasing the

item. A PBE is then a pair β = {(pt), (ct)} coupled with beliefs such that given beliefs, the

strategies are sequentially rational, beliefs are derived from β via Bayes rule whenever possible.

I claim that there exists an equilibrium where the seller fixes an initial price at p0 > 0 and for

every period t > 0 he fixes prices at pt = q. First, buyers expecting this seller strategy profile to

be played in an equilibrium expect that there are no gains from trade to be had by delaying their

purchases decide to buy the good at a price of p0 provided that p0 ≤ E[q|xi] = exi . Hence, for

each quality q, the share of buyers purchasing the good in period 0 ifD(p0, q) = 1−Φ

[
1
σ̂ ln

(
p0
q

)]
for Φ(.) being the CDF of the standard normal distribution. Observe that the corresponding

p.d.f. of a normal distribution with mean µ ans variance σ will be defined as ϕ(x, µ, σ).

The seller also conjectures that he would fix prices after period ∆ and expects that for each

price p0 he picks, his revenues are

r(p0) =

∫ ∞

0

p0

{
1− Φ

[
1

σ̂
ln

(
p0
q

)]}
+ δqΦ

[
1

σ̂
ln

(
p0
q

)]
dϕ(ln q, µ, σ)

= p0 +

∫ ∞

0

ϕ(ln q, µ, σ)Φ

[
1

σ̂
ln

(
p0
q

)]
[δq − p0]dq.

The optimal price p0 then maximizes r(p0) among all prices p0 ≥ 0 and it satisfies the first

order condition

(C1) σ̂ +

∫ ∞

0
ϕ(ln q, µ, σ)ϕ

[
ln

(
p0
q

)
, 0, σ̂

][
δ − p0

q

]
dq = σ̂

∫ ∞

0
ϕ(ln q, µ, σ)Φ

[
1

σ̂
ln

(
p0
q

)]
dq.

Now, once buyers purchase the good in period 0, they all observe a share of buyers purchasing
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the good m0 ∈ (0, q) and this quantity can only be associated with a unique quality q satisfying

D(p0, q) = m0. Hence, buyers learn that the common value equals to q. The seller then fixes

the price at q and buyers are indifferent between buying and waiting, so it is an equilibrium for

them to buy the good.

Empirical Evidence

I focused on the theoretical observation that interdependence in valuations prevents the

Coase conjecture in auctions. Art auctions are an empirical analog to the setting discussed

and, in this appendix, I study the pattern of sequential auctioning of paintings that previously

failed to sell. It is already known that if an artwork is sent to auction, it fails to sell, and it is

successfully re-auctioned at the same auction house and location, then the expected sale price

is lower than would have been expected from a comparable artwork that was not previously

auctioned unsuccessfully. This is known as value burning in the literature. The model, however,

suggest that artworks may not be re-auctioned, but it is not clear whether the seller avoids

re-offering artworks altogether. I analyze the frequency at which artworks that fail to sell are

re-auctioned later using data from Beggs and Grady (2009). My main result is that sellers

seldom re-auction artworks at public auctions once the artwork sells.

I will first describe the data at hand. The data consists of Impressionist art auctions held

by Sotheby’s and Christie’s from 1980 to 1991 in London and New York. The art market, in

general, has been concentrated in these two cities since the mid-1940s. ArtBasel (2020) shows

that, even to this day, Christie’s and Sotheby’s of New York and London account for more than

sixty percent of all sales by volume and revenue and this share has been roughly constant for the

preceding decade. Nonetheless, it is possible for an artwork to have failed to sell at an auction

house but being re-auctioned at a different location that is not in the sample. For example, a

Monet may fail to sell in Sotheby’s London, fails to sell, and it is later re-auctioned by Phillips

in Paris. Next, it is difficult to extend the dataset to a more recent period since auction houses

do not publish their failed sales and one would have to include offerings in Hong Kong.

I first note that around thirty percent of Impressionist artworks fail to sell. Figure DII

shows that the share of artworks that failed to sell varied between eighteen and forty percent

in the analysis period. This rate is in line with previous studies pertaining the Impressionist
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Figure DI. : Share of artworks re-offered by the time since last auction.

(a) Source. Author’s calculation using Beggs and Grady (2009) data.

art market. Furthermore, Ashenfelter and Grady (2003) and Ashenfelter (1989) show that the

share of items brought to auction that fail to sell does vary across art movements.

I then estimate that roughly ten percent of artworks that failed to sell were eventually re-

auctioned. Meanwhile, around four percent of artworks that initially sold at auction are also

re-auctioned. This implies that failing to sell is associated with roughly a five percentage points

increase in the likelihood that an item is re-offered.

Figure DII. : Share of Impressionist paintings that failed to sell at auction.

Figure DIa further plots the cumulative share of artworks re-auctioned as a function of the

time since the initial offering. This figure allows us to observe whether artworks that failed to

sell are, on average, re-auctioned sooner than artworks that were successfully sold. Roughly 60

percent of all paintings that initially failed to sell and were re-auctioned within the first two
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years of the initial offering. But the rest are sold after a considerably longer wait. This implies

that the average time between offerings of these artworks is approximately five and a half years.

Meanwhile, roughly half of the artworks that did sell at auctioned and re-auctioned at later

dates.

Next, I consider whether these quantitative observations are a result of confounding factors.

For example, artworks that failed to sell might have been offered at auctions with fewer buyers,

created by less recognizable artist, or had other properties which were pathologically unappealing

to their art market in the 1980s. Controlling for market, artist, price estimates and artwork fixed

effects, I find that an item failing to sell is associated with a 5.2 percentage point increase in the

probabilities that the item is re-offered as reported in table DI. On the other hand, I find that

an item failing to sell is associate with a 0.04 year increase in the time between re-offerings.

Such difference is nonetheless neither economically nor statistically significant. As usual, I

make no claims that these coefficients reflect any sort of causal relation nor assume that there

could be informative of any kind of policy experiment. What I claim is that these correlates

are informative of descriptive, empirical patterns of interest. In other words, had the Coase

conjecture better described reality and the seller would prefers frequently auctioning his good,

it should be a near certainty that goods that fail to sell are quickly and often re-auctioned: and

not 5 percentage points more often than paintings that sold and after the shortest wait possible

and not 5 years.

These results suggest that an item is slightly more likely to be re-offered if it failed to sell

but that there is limited evidence to support that these artworks were re-auctioned sooner than

their counterparts. Thus, there is little empirical evidence supporting the belief that dynamic

commitment considerations are empirically relevant for the market in consideration.

I conclude this empirical section making several caveats. First, extending to the current era

is difficult. This is because auction houses do not freely publish reports on the artworks that

failed to sell. Hong Kong also emerged as a significant art market, so expanding the dataset

would require compiling data from China as well. Next, I do not make any claims that these

patterns must extend to other art markets or to auctions in general. Further empirical work

should clarify this point further. The last point is that sellers have non-auction avenues to sell

their artworks (e.g., private sales and direct offerings to collectors) and getting information on
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Table DI: Marginal effect of no sale the probability that the item is re-auctioned within ten

years of its last offering and the expected wait on being re-auctioned among artworks auction

multiple times.

those markets is notoriously difficult.

Proofs.

This section of the paper presents the proofs. First, I present the proof pertaining the

motivating example. I then present the proofs to the auxiliary results. Lastly, I present the

proof of the main theorem.

Proof of lemma 2.

Proof

The proof proceeds as follows. I will posit that the seller posts the optimal strategy and that

buyers expect that the good will not be re-offered. Next, I rationalize the conjecture posited.

Suppose that the seller posts a price schedule pt = p∗ for each period t and the item

fails to sell in period 0. Then, every buyer who observed good news has a valuation equal to

vi1 ≡ θiq(θ
∗) ≤ θ∗q(θ∗) and
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θ∗E[q|xi = 1, agent w/ θi = θ∗, wins] =
θ∗πλw(θ

∗, 1)n−1

πλw(θ∗, 1)n−1 + (1− π)(1− λ)w(θ∗, 0)n−1

=

θ∗
(

λ
1−λ

)(
π

1−π

)[w[θ∗,1]
w[θ∗,0]

]n−1

(
λ

1−λ

)(
π

1−π

)[w[θ∗,1]
w[θ∗,0]

]n−1

+ 1

≤
θ∗θs
θ∗−θs
θs

θ∗−θs
+ 1

=
θsθ

∗

θs + (θ∗ − θs)
= θs.

(E1)

Observe that the second line uses the condition stated in the prompt. Next, notice that no

buyer is willing to bid more than θs in period 0, so the seller prefers keeping the item and when

he posts p1 = p∗ no buyer bids with probability 1.

Assume that by period t ≥ 1, the seller maintains the prices at ps = p∗ for s ≤ t. Then

in period t, no buyer is expected to submit a bid at any period s ≥ 1 and thus beliefs do not

change from period 1. Consequently, all buyers still value the good less than θs, the seller still

prefers keeping the good, and he might as well fix prices at pt = p∗.

The opposite direction is immediate. Suppose that θ∗q(θ∗) ≤ θs, then

θs ≥ θ∗q(θ∗) =
θ∗πλw(θ

∗, 1)n−1

πλw(θ∗, 1)n−1 + (1− π)(1− λ)w(θ∗, 0)n−1

=

θ∗
(

λ
1−λ

)(
π

1−π

)[w[θ∗,1]
w[θ∗,0]

]n−1

(
λ

1−λ

)(
π

1−π

)[w[θ∗,1]
w[θ∗,0]

]n−1

+ 1

.

(E2)

If one re-arranges the inequality at hand, it holds

(E3) θs
( λ

1− λ

)( π

1− π

)[w[θ∗, 1]
w[θ∗, 0]

]n−1

+ θs ≥ θ∗
( λ

1− λ

)( π

1− π

)[w[θ∗, 1]
w[θ∗, 0]

]n−1

and collecting terms leads to equation 2. □

E1. Proof of Lemma 3, Theorem 1, and Theorem 2.

I now prove the auxiliary results. First, I prove that buyers follow a threshold strategy in

every equilibrium. Next, I establish of progressive pessimism. The last prove provides bounds
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on the equilibrium revenues that the seller attains.

Buyers follow a threshold strategy, lemma 3.. — Proof

I first prove that buyers follow a threshold strategy (ut). This argument has two steps.

First, I show that if buyer i has a greater valuation at some period t when his type is τ than

when his type if τ ′, then his valuation given type τ remains greater than given type τ ′ for every

period s ≥ t. The next result establishes that the net payoff between bidding right away and

waiting is non-decreasing in the current valuation.

Single Crossing Property Holds. — The first section of the proof first establishes a non-

crossing difference in payoffs.

PROPOSITION 6: For every pair τ, τ ′ ∈ [0, 1]2 and x−i,∈ [0, 1]n−1, ∆(τ, τ ′, x−i) ≡ u(τ, x−i)−
u(τ ′, x−i) ≥ 0 iff ∆(τ, τ ′, 0) ≥ 0.

Proof

Fix some pair τ, τ ′ ∈ [0, 1]2 and a x−i ∈ [0, 1]n−1. First, if ∆(τ, τ ′, 0) ≥ 0, then the non-

decreasing differences condition implies that ∆(τ, τ ′, x−i) ≥ 0 for each x−i ∈ [0, 1]n−1. This

establishes the inverse direction. Next, suppose for contradiction that ∆(τ, tau′, x−i) ≥ 0 but

∆(τ, τ ′, 0) < 0. Since u(.) is continuous, then ∆(τ, τ ′, .) is also continuous. Since [0, 1]n−1 is

connected, then the intermediate value theorem implies that ∆(τ, τ ′, [0, 1]n−1) is also connected.

Hence, there exists some x′−i ∈ [0, 1]n−1 such that ∆(τ, τ ′, x′−i) = 0 and by non-decreasing

difference, it holds that

(E4) 0 < |∆(τ, τ ′, 0)| ≤ |∆(τ, τ ′, x′−i)| ≤ ∆(τ, τ ′, x′−i) = 0.

This is a contradiction and concludes the proof. □

Belief Independence Ordering in Valuations.. — Next, I establish that if buyer i values the

good more when he observes τ than when he observes τ ′ for some given beliefs regarding x−i.

Then he would still value the good more when his type is τ rather τ ′ given any other alternative

belief regarding x−i.
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COROLLARY 7: Fix some PBE, history h, and suppose that for some pair of types τ, τ ′ it

holds that E[u(τ, x−i)|h] ≥ E[u(τ ′, x−i)|h], then for every h′, it holds that E[u(τ, x−i)|h′] ≥
E[u(τ ′, x−i)|h′].

Proof Fix some PBE, history h, pair of types τ, τ ′, and assume that E[u(τ, x−i)|h] ≥ E[u(τ ′, x−i)|h].
This equivalently implies that E[∆(τ, τ ′, x−i)|h] ≥ 0 and hence there exists some x−i ∈ [0, 1]n−1

such that ∆(τ, τ ′, x−i) ≥ 0. By proposition 6, it follows that for each x′−i ,∆(τ, τ ′, x′−i) ≥ 0.

Consequently, for each history h′

(E5) 0 = E[0|h′] ≤ E[∆(τ, τ ′, x′−i)|h′].

This concludes the proof. □

Payoffs from participating in an auction increases with valuations. — I now prove that the

payoff that a buyer receives from participating in an auction is non-decreasing in his valuation

conditional on winning.

PROPOSITION 8: For every feasible terms of trade m = (p, x, t) and belief on valuations

H, buyer payoffs from participating in the terms of trade is non-decreasing in his valuation v.

Furthermore if some buyer with a valuations v wins the item with a strictly positive probability,

then the

Proof Fix some reserve price p, a belief H, and a pair of valuations conditional on winning v, v′

such that p ≤ v ≤ v′ ≤ 1. Then, the payoff that a buyer nets equals to his valuation minus the

second highest valuation

V (v′, H) =

∫ v′

0

(v′ −max{y, p})dH2(y)

=

∫ v

0

(v′ −max{y, p})dH2(y) +

∫ v′

v

(v′ −max{y, p})dH2(y)

≥
∫ v

0

(v −max{y, p})dH2(y) +

∫ v′

v

(v′ −max{y, p})dH2(y)

= V (v′, H) +

∫ v′

v

(v′ −max{y, p})dH2(y)

≥ V (v′, H)

(E6)
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where H2(·) refers to the distribution of the second highest valuation given belief CDF H

and V (x,H) is the valuation that a buyer with a valuation conditional on winning the good

when beliefs are given by H. This concludes the proof. □

Buyers follow a Threshold strategy. — I now prove that the decision to participate in the

auction must be characterized by a threshold strategy. The argument presented here is standard.

Fix some PBE, period t, history ht, and a buyer i. Assume that buyer i has a type τ and he

weakly prefers to participate in the current terms of trade mt. Then it must be the case that his

payoff from participating in the current terms of trade is weakly greater than waiting: formally,

let the buyer’s valuation be v(τ, ht) ≡ E[u(τ, x−i)|ht]

(E7) V (v(τ, ht), H(.|hτ )) ≥ W (τ, ht) ≡ E

[ ∞∑
s=1

δτ bt+s(τ, ht+s)st+s(ht+s)V (v(τ, ht+s), H(.|ht+s))|ht

]
≥ 0

for bt+s(x, ht) is the probability that a buyer participates in an auction conditional on the

good remaining unsold by period t+ s, the buyer choosing not to bid right away, and history ht,

st+s(ht+s) denotes the probabilities that the item has failed to sell and W (τ, ht) his option value

from waiting. Now suppose that the buyer had a valuation τ ′ such that V (v(τ ′, ht), H(.|ht)) >
V (v(τ, ht), H(.|ht)). I claim that if buyer had type τ ′ rather than type τ , the seller still prefers

bidding. First, observe that the type is unverifiable, so buyer i observing τ ′ can replicate the

equilibrium strategy he is supposed to pick when his type is τ instead, and vice versa, and cannot

receive strictly higher payoff from deviating. Furthermore, as v(τ ′, ht) ≥ v(τ, ht) then corollary

7 implies that his valuation in any subsequent history ht+s satisfies that v(τ ′, ht+s) ≥ v(τ, ht+s;

moreover, proposition 8 implies that

(E8) V (v(τ, ht+s), H(.|ht+s)) ≤ V (v(t, hs+τ ), H(.|hs+τ )).

Therefore, it holds that the PBE equilibrium payoffs satisfy

U(τ ′, ht) ≥ E

[ ∞∑
τ=0

δτss+τ (hs+τ )V (v(t′, hs+τ ), H(.|hs+τ ))|ht
]
≥ W (t, ht)(E9)

as the buyer with type τ must henceforth fix his participation to 1 and
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U(τ, ht) ≥ E

[ ∞∑
τ=0

δτss+τ (hs+τ )bs+τ (t
′, hs+τ )V (v(t, hs+τ ), H(.|hs+τ ))|ht

]
.(E10)

Consequently, the difference in equilibrium payoffs must satisfy

U(τ ′, ht)− U(τ, ht) ≥

E

[ ∞∑
τ=0

δτss+τ (hs+τ )[V (v(t′, hs+τ ), H(.|hs+τ ))− V (v(t, hs+τ ), H(.|hs+τ )]|ht
]
≥ 0.

(E11)

However, since types are unverifiable, then the difference in options values from delay must

be greater than the payoff that a buyer observing type τ could get if he plays the strategy of a

buyer observing τ ′, i.e.

W (t′, ht)−W (t, ht) ≤

E

[ ∞∑
τ=0

δτss+τ (hs+τ )bs+τ (t
′, hs+τ )

{
V (v(t′, hs+τ ), H(.|hs+τ ))− V (v(t, hs+τ ), H(.|hs+τ ))

}
|ht

](E12)

This implies that that

(E13) E

[ ∞∑
τ=0

δτss+τ (hs+τ )[bs+τ (t
′, hs+τ )− 1]

{
V (v(t′, hs+τ ), H(.|hs+τ ))− V (v(t, hs+τ ), H(.|hs+τ ))

}
|ht

]
≥ 0.

But since for each history ht+τ , V (v(τ ′, ht+τ ), H(.|ht+τ )) ≥ V (v(τ, ht+τ ), H(.|ht+τ )) and the

choices 1 ≥ bt+s(., τ) and non-decreasing in the history set order, then it must hold that

(E14) E

[ ∞∑
τ=1

δτss+τ (hs+τ )[bs+τ (t
′, hs+τ )− 1]

{
V (v(t′, hs+τ ), H(.|hs+τ ))− V (v(t, hs+τ ), H(.|hs+τ ))

}
|ht

]
≤ 0

and

[bs(t
′, hs)− 1]{V (v(t′, hs), H(.|hs+))− V (v(t, hs), H(.|hs+τ ))}

+E

[ ∞∑
τ=1

δτss+τ (hs+τ )[bs+τ (t
′, hs+τ )− 1]

{
V (v(t′, hs+τ ), H(.|hs+τ ))− V (v(t, hs+τ ), H(.|hs+τ ))

}
|ht

]
= 0

(E15)

This concludes the proof since for the only way both equations hold is for the buyer observing

history τ ′ to also bids immediately. □
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Progressive Pessimism, Theorem 1.. — Proof

This proof establishes that in every period t and history ht, prior beliefs Ft(·|ht) likelihood
ratio dominate posterior beliefs F

′
t (·|ht). I present the argument for interdependent values since

the argument for valuations and private values is identical to the one in question. It is worth

noting that these proofs go by induction and that I present the induction step first and the

initial condition.

Now that this lemma is established, it will be immediate that if Ht[0, vt] likelihood ratio

dominated Ht+1[0, ut+1], for ut+1 ≤ vt, then Ht/Ht(ut+1)[0, vt] also likelihood ratio dominates

Ht+1[0, ut+1].

Learning and Induction Step. — Fix some PBE whose threshold strategy is (ut), period t,

history ht+1, and assume that the prior belief are given by a CDF F (.|ht) denote each buyer

i’s belief regarding each buyer j ̸= i’s interdependent value xj with pdf ft(.|ht), and the item

remains unsold. Since the item remains unsold it holds that for every buyer i v(τi, ht) ≤ ut(ht+1).

Therefore, for each interdependent value xj ∈ [0, 1] Bayes’ rule implies that the posterior beliefs

in period t, i.e. beliefs once the good fails to sell, satisfiy

ft+1(xj |ht+1) =
Pr(v(xj , θ̃j , ht) ≤ ut(ht+1)|ht)f(xj |ht)∫ 1
0 Pr[v(y, θ̃j , ht) ≤ ut(ht+1)|ht]f(y|ht)dy

=
f(xj |ht)

∫
v(xj ,θ̃j ,ht)≤ut(ht+1)

Kt(θ̃|ht)dθ̃∫ 1
0 f(y|ht)

∫
v(x′

j ,θ̃j ,ht)≤ut(ht+1)
Kt(θ̃′|ht)dθ̃′jdy

(E16)

where Kt(·|ht) are the equilibrium beliefs regarding private values, i.e. each agent i in

period t and history ht expects that the private value of each peer j is distributed given θj ∼
Kt(·|ht)[0, 1].

Now, pick some pair xj , x
′
j ∈ [0, 1] such that xj ≤ x′j , then as u(.) is strictly increasing in

(θ, x), then so is v(., ht) = E[u(., x−i)|ht, (·), i wins] for each history ht given that the expectation

operator preserves monotonicity. By proposition 8, it further holds that if (θ, xj) < (θ, x′j), then

v(θ, xj , ht) ≤ v(θ, x′j , ht). This is because the payoff that each buyer would net from participating

in an auction as well as the equilibrium payoff must be non-decreasing in each buyer’s valuation.

Consequently, for each pair of interdependent values xj , x
′
j such that xj ≥ x′j the set of private
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values θj for which buyer j does not participate in the auction when he observes xj is smaller

than comparable set given x′j :

(E17) {θ ∈ [0, 1]|w(θ, x′j , ht) ≤ ut(ht+1)} ⊂ {θ ∈ [0, 1]|w(θ, xj , ht) ≤ ut(ht+1)}.

Since beliefs denote a measure on the set of private values and probability measures are

monotone, then

(E18) Prt(V (x′j , θ̃j , ht) ≤ θs(ht+1)|ht) ≤ Prt(V (xj , θ̃j , ht) ≤ θs(ht+1)|ht).

Informally, this argument states that since payoffs are strictly increasing and x′j ≤ xj ,

then there exists a larger collection of private values that buyer j could have observed and his

valuation to lie below any given cutoff. Next, if one divides ft+1(x
′
j |ht+1) by ft+1(xj |ht+1), then

it holds that

(E19)
ft+1(x

′
j |ht+1)

ft+1(xj |ht+1)
=

[
ft(x

′
j |ht)

ft(xj |ht)

][
Prt(v(x

′
j , θ̃j , ht) ≤ ut(ht+1)|ht)

Prt(v(xj , θ̃j , ht) ≤ ut(ht+1)|ht)

]
≤

ft(x
′
j |ht)

ft(xj |ht)
.

Since xj , x
′
j were arbitrarily chosen, one can conclude that Ft(.|ht) likelihood ratio dominates

Ft+1(.|ht+1).

Initial Step. — In this part of the proof, I establish the initial step in the inductive argument.

Fix some price p0 ∈ [0, 1] and let h1 = {p0}. Then suppose that the item failed to sell, the each

buyer i updates his belief that his peer j ̸= i observes xj via Bayes rule as follows

f0(xj |h1) =
Pr(v0(xj , θ̃j) ≤ u0(h1))f(xj)∫ 1

0
Pr(v0(y, θ̃j) ≤ u0(h1))f(y)dy

=
f(xj)

∫
v0(xj ,θ̃j)≤u0(h1)

k(θ)dθ∫ 1

0
f(y)

∫
v0(x

′
j ,θ̃j)≤u0(h1)

K(θ′, y)dθ′dy
.(E20)

Now, pick some pair of interdependent values xj , x
′
j such that xj < x′j , then the same argument

in period t and ht implies that

(E21) {θ ∈ [0, 1]|v0(θ, x′j) ≤ u0(h1)} ⊂ {θ ∈ [0, 1]|v0(θ, xj) ≤ u0(h1)}.

Consequently, by the monotonicity of probability measures, it holds that
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(E22) Pr(v0(x
′
j , θ̃j) ≤ u0(h1)|h0) ≤ Pr(v0(xj , θ̃j) ≤ u0(h1)|h0).

Lastly, if one divides f ′
0(x

′
j |h1) by f ′

0(xj |h1), it holds that

(E23)
f0(x

′
j |h1)

f0(xj |h1)
=

[
f(x′j)

f(xj)

][
Pr(v0(x

′
j , θ̃j) ≤ u0(h1))

Pr(v0(xj , θ̃j) ≤ u0(h1))

]
≤

f(x′j)

f(xj)
.

Since the choice of xj , x
′
j ∈ [0, 1] and p0 are arbitrary, then F (·) likelihood ratio dominates

the posterior F0(·|h1) for each price p0 such that h1 = {p0}. □

Proof of Corollary 4.. — This subsection characterizes how the dispersion in valuations falls

over time.

Proof

I will first prove that valuations fall. Fix some PBE, period t, history ht, and price pt. Define

ht+1 = (ht, pt), then progressive pessimism, i.e. the previous theorem, states that Ft(·|ht) like-
lihood ratio dominates Ft+1(·|ht+1). Next, progressive pessimism implies First order stochastic

dominance. Consequently, since u(·) is strictly increasing, then for each type τi, it holds that

(E24) vt(τi, ht) = Et[u(τi, x−i)|ht, τi, i wins] ≥ Et+1[u(τi, x−i)|ht+1, τi, i wins] = vt+1(τi, ht+1).

Next, I show that the dispersion in valuations falls. Fix some PBE, some period t, a history

ht, price pt, and a pair of types τ, τ ′. Then let us suppress conditioning on winning the auction

and it holds that

Et[|vt(τ)− vt(τ
′)||ht] = Et[|Et[u(τ, x−i)− u(τ, x−i)|ht]||ht]

= Et[|Et[∆(τ, τ ′, x−i)|ht]||ht]

= Et[Et[∆(τ, τ ′, x−i)|ht]χ(∆(τ, τ ′,0) ≥ 0)− [∆(τ, τ ′, x−i)|ht]χ(∆(τ, τ ′,0) ≤ 0)|ht]

≥ Et+1[Et[∆(τ, τ ′, x−i)|ht]χ(∆(τ, τ ′,0) ≥ 0)− [∆(τ, τ ′, x−i)|ht]χ(∆(τ, τ ′,0) ≤ 0)|(ht, pt)]

= Et+1[|Et[u(τ, x−i)− u(τ, x−i)|ht]||(ht, pt)]

= Et+1[|vt(τ)− vt(τ
′)||(ht, pt)]

(E25)
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where the third line just implements the definition of the absolute value. Meanwhile, the

fourth line uses the fact that when the indicators are active both functions are increasing in

their arguments and the beliefs in period t likelihood ratio dominate their posterior beliefs. □

Revenue Bounds, Theorem 2.. — Proof

In this proof, I provide bounds on equilibrium revenues. First, I provide an upper bound.

Suppose that after a given period, the seller can commit to a direct, dynamic mechanism (see

Myerson 1986) where buyers who have identical, initial valuations expect to have the same

equilibrium payoff. Then, I find that for any dynamic mechanism, there exists a comparable

mechanism that either elicits trade immediately or never trades with buyers. I show that the

payoff from both mechanism are the same; meanwhile, the restriction in mechanisms ensures that

it can be implemented in the current environment. The second part of the proof characterizes

a lower bound. I find that there exists a collection of auctions that the seller can run in period

0 after which buyer valuations conditional on winning the good fall below the seller’s valuation

of θs and the seller might as well keep his good.

Revenue Ceiling.. — Fix some PBE, period t, and history ht. Define a contract under full

commitment as a tuple m = (x, r, T ) : T n → ∆n−1 × ℜn × Z+ ∪ {∞} such that for each tuple

τ̃ = (τi) and buyer i,

i. Probability that buyer i wins the good is xi(τ̃)

ii. Expected payment made by buyer i is ri(τ̃)

iii. The expected period in which agents expect the good to trade t+ T (τ̃).

I assume that the seller can only consider contracts in which buyers who have the same

valuation for the good win the good with equal odds and make the same expected payment, i.e.

for every pair of buyer i, j and types τi, τj such that v(τi, ht) = v(τj , ht), it holds that

(E26) xi(τi, τ̃−i) = xj(τj , τ̃−j) and ri(τi, τ̃−i) = rj(τj , τ̃−j)

Next, I define standard functions that will allow me to state which terms of trade are feasible

in a compact manner. Fix some buyer i and types τi, τ
′
i , then define the following functions
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i. Discounted, payoff from buyer i winning the good when he observes types τi but reports

type τ ′i :

(E27) qi(τi, τ
′
i) ≡ E[δT (τ̃−i,τ

′
i)u(τi, x−i ∈ τ̃−i)xi(τ

′
i , τ̃−i)|ht, i wins]

ii. Discounted, expected payment made by buyer i when he reports type τ ′i but he is actually

of type τi:

(E28) pi(τ
′
i , τi, B) ≡ E[δτ(τ̃−i,τ

′
i)ri(τ̃−i, τ

′
i)|ht, i wins].

Next, the contract m is feasible iff it is incentive compatible and individually rational, i.e.

(Individual Rationality) ∀i, τi E[qi(τi, τi)− pi(τi, τi)] ≥ 0

and

(Incentive Compatability) ∀i, τi, τ ′i , qi(τi, τi)− pi(τi, τi) ≥ qi(τi, τ
′
i)− pi(τi, τ

′
i).

Replication Argument. — Now, pick some feasible contract m. Define an alternative terms

of trade m′ as follows. For every τ̃ , i let

i. τ ′(τ̃) = 0,

ii. r′i(τ̃) = δτ(τ̃)ri(τ̃),

iii. and x′i(τ̃) = δτ(τ̃)xi(τ̃).

Define for each buyer i and types τi, τ
′
i , the functions

q′i(τi, τ
′
i) = E[x′i(τ̃−i, τ

′
i)u(τi, τ̃−i)|ht, i wins]

and

p′i(τi, τ
′
i) = E[r′i(τ̃−i, τ

′
i)|ht, i wins].
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By construction, for every buyer i and pair of types ∀τi, τ ′i , it holds that qi(τi, τ
′
i) = q′i(τi, τ

′
i)

and pi(τi, τ
′
i) = p′i(τi, τ

′
i): thus as m is feasible, then m′ is also feasible. Next, terms of trade m’s

expected revenues equal to

(E29) r(m) = E
[∑

i∈I
δt(s)ri(s)

]
= E

[∑
i∈I

r′i(s)

]
= r(m′),

so the seller expects to gain the same returns in terms of trades m and m′. This implies

that the seller, with full commitment, might as well only consider terms of trade where he either

trades in the initial period or does not trade. This establishes the proof that rs ≤ r∗s for every

history almost surely.

Revenue Floor. — I now prove that the seller’s revenue is greater than immediately running the

revenue maximizing auction after which the seller avoids re-auctioning his good, i.e. re0 < r0 ≤ r0.

I first establish the following technical result:

PROPOSITION 9: There exists some value p ∈ (θs, v0(1, 1)) such that for each type τ such

that w0(τ), E[u(τ, x−i)|∀j ̸= i, w0(τj) ≤ p] ≤ θs.

Before proving this result, it is important to describe why it matters. Suppose that one dealt

with a private value setting. Then, if the item fails to sell, buyers do not lower their valuation

and thus there is no such p for which the seller nets higher revenues than by just running an

efficient auction and this result is moot.

Proof This proof has several steps. First, I derive the posterior distribution on interdependent

values if the seller runs an auction with a reserve price p, buyers decide to bid if their valuation

is above p, but the good failed to sell. Next, I show that the initial beliefs likelihood ratio

dominate these beliefs and I order posterior beliefs by p. I then show that valuations in period

1 are strictly increasing in the reserve price p. Lastly, I prove the proposition.

Bayes rule.. — Pick some pair of values p, p′ ∈ (v0(0, 0), v0(1, 1)) where p < p′ and for each

type τ v0(τ) = E[u(τ, x−i|τi, i wins]. Then for each interdependent value realization xi, it holds

that for each P ∈ {p, p′} one can define f(x|P ) = Pr(x|m(θj , xj) ≤ P ) and it satisfies,
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(E30) f(x|P ) =
Pr(v0(θ, x) ≤ P |x)f(x)∫ 1

0 Pr(v0(θ, y) ≤ P |x)f(y)dy

Note that since p < p′, then for each (x, θ) such that v0(θ, x) ≤ p < p′, so Pr(v0(θ, x) ≤
p) ≤ Pr(v0(θ, x) ≤ p′). Furthermore, if there exists some value θ ∈ (0, 1) such that v0(θ, x) > p,

then the inequality is strict. Further notice that since p, p′ < v1(1, 1), then it holds that

(E31)

∫ 1

0
Pr(v0(θ, y) ≤ p|y)f(y)dy <

∫ 1

0
Pr(v0(θ, y) ≤ p′|y)f(y)dy.

Ordering posterior beliefs by p.. — I claim that this fact allows me to prove that F (·|p′),
i.e. the CDF associated with f(·|p′), first order stochastically dominates F (·|p).

Suppose for contradiction that there exists some value y ∈ (0, 1) such that F (y|p) ≤ F (y|p′),
then this implies that

0 ≤ F (y|p′)− F (y|p) =
∫ y

0

f(x|p′)− f(x|p)dx

=

∫ y

0

f(x)

[
Pr(v0(θ, x) ≤ p′|x)∫ 1

0
Pr(v0(θ, y) ≤ p′|y)f(y)dy

− Pr(v0(θ, x) ≤ p|x)∫ 1

0
Pr(v0(θ, y) ≤ p|y)f(y)dy

]
dx

≤
∫ y

0

f(x)Pr(v0(θ, x) ≤ p′|x)dx
[

1∫ 1

0
Pr(v0(θ, y) ≤ p′|y)f(y)dy

− 1∫ 1

0
Pr(v0(θ, y) ≤ p|y)f(y)dy

]

< 0

∫ y

0

f(x)Pr(v0(θ, x) ≤ p′|x)dx

= 0

(E32)

This is a contradiction. Note that the third line follows from the fact that Pr(v0(θ, x) ≤ p) ≤
Pr(v0(θ, x) ≤ p′) and the fourth line from equation E31. This implies that F (·|p′) first order

stochastically dominates F (·|p).

Initial Beliefs Dominate Posteriors. — Next, I claim that F likelihood ratio dominates

F (·|p) for P ∈ (v0(0, 0), v0(1, 1)). Fix P , then note that for each pair 0 < x < x′ < 1, it holds

that Pr(v0(θ, x
′) ≤ P |x′) ≤ Pr(v0(θ, x) ≤ P |x′) and v0(·, ·) is a strictly increasing function.

Furthermore, if v0(q, x) > P , then the inequality is strict. Now, pick some pair z, y ∈ [0, 1] such

that z < y, then the aforementioned inequality implies that

f(z|P )

f(y|P )
=

[
Pr(v0(θ, z) ≤ P |z)
Pr(v0(θ, y) ≤ P |y)

]
f(z)

f(y)
≤ f(z)

f(y)
(E33)
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where the inequality is strict if v0(y, 1) > P . Therefore, F likelihood ratio dominates

F (·|p) for P ∈ (v0(0, 0), v0(1, 1)) and hence F first order stochastically dominates F (·|p) for

P ∈ (v0(0, 0), v0(1, 1)).

Beliefs are continuous in p.. — Pick some p ∈ (v0(0, 0), v0(1, 1)), then observe that for each

value x ∈ [0, 1]

(E34) Pr[v0(x, θ) ≤ p|x] ≡ t(p, x) =


1 if v(x, 1) ≤ p

K[v−1
0 (x, p)] if v(x, 1) > p

where v−1
0 (x, ·) is well defined for each x and differentiable since u(·) is a strictly increasing

and continuously differentiable function. This implies that in all but a Lebesgue-measure zero

set, the partial derivative ∂pt(x, p) is well defined for each x. Moreover, beliefs can be re-written

as

(E35) f(x|p) = t(x, p)f(x)∫ 1
0 t(y, p)f(y)dy

,

so the partial derivative ∂pf(x|p) is well defined almost surely. Next, I define valuations

given a reserve price p ∈ (v0(0, 0), v0(1, 1)) for each type τ as

(E36) v(τ, p) = E[u(τ, x−i)|∀j ̸= i, v0(τj) ≤ p] =

∫
[0,1]n−1

u[τ, x−i = (xj)j ̸=i]
∏
j ̸=i

f(xj |p)d(xj)j ̸=i.

Observe that the partial derivative of ∂pv(τ, p) is well defined and hence for each type τ ,

v(τ, ·) is a continuous function since it is continuously differentiable.

Beliefs are increasing in p.. — I now continue with the function v(τ, ·) for a fixed τ . I claim

that for each type τ , v(τ, ·) is strictly increasing.

Fix some τ ∈ T and a pair of reserve prices p, p′ ∈ (v0(0, 0), v0(1, 1)) such that p < p′. Then

as u(·) is a strictly increasing function of x−i and F (·|p′) first order stochastically dominates

F (·|p), then
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v(τ, p) =

∫
[0,1]n−1

u[τ, x−i = (xj)j ̸=i]
∏
j ̸=i

f(xj |p)d(xj)j ̸=i

<

∫
[0,1]n−1

u[τ, x−i = (xj)j ̸=i]
∏
j ̸=i

f(xj |p′)d(xj)j ̸=i = v(τ, p′).

(E37)

This proves that for each τ , v(τ, ·) is strictly increasing. Also, note that as F likelihood

ratio dominate F (·|p) for each p ∈ (v0(0, 0), v0(1, 1)), then it first order stochastically dominates

it. Hence,

(E38) ∀τ ∈ T , p ∈ (v0(0, 0), v0(1, 1)), v(τ, p) < v0(τ).

Proof Conclusion.. — I now prove that p > θs exists. Fix some τ such that v0(τ) ≤ θs, then

for each the previous result implies that v0(τ, θs) < v0(τ) ≤ θs. This implies that if the seller

runs an efficient auction and the item fails to sell, then valuations fall enough such that the

seller keeps his good. Next, suppose that the seller picks as his reserve price v0(1, 1), then with

probability 1 for every type τ ∈ T do not place a bid, i.e. v0(τ) ≤ v0(1, 1). Since almost surely

no buyer bids, then beliefs do not update and v0(τ) = v(τ, v0(1, 1)) for each type τ and it holds

that there exists types such that v(τ, v0(1, 1)) > θs; for instance, τ = (1, 1). This implies that if

the seller announces a price that is large enough such that all buyers wait, then beliefs do not

update and the higher valuation among buyers remains higher than θs.

Next, let us consider the types τ = ϵ(1, 1) for some ϵ ∈ [0, 1], then the image of v0[ϵ(1, 1)] is

[v0(0, 0), v0(1, 1)]. Hence, for each type τ , there exist an ϵ(τ) such that

v0[ϵ(τ)(1, 1)] = v0(τ)

. Moreover, by the assumption of monotone differences, then for each belief regarding x−i it

holds that

(E39) E[u(τ, x−i)− u(ϵ(τ)(1, 1), x−i)] = 0.

This allows me to finish the proof by only considering the ray {ϵ(1, 1)|ϵ ∈ [0, 1]}. Define for
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each reserve price p ∈ (v0(0, 0), v0(1, 1)) the value ϵ(p) which solves

(E40) v0[ϵ(p)(1, 1)] = p.

Notice that as u(·) is strictly increasing, then ϵ(·) is strictly increasing. Next, notice that

ϵ(1) = v0(1, 1) and that for v0[ϵ(θs)] = θs it holds that ϵ(θs) ∈ (0, 1).

I conclude the proof by defining one last function. Let let the maximum valuation when

the item fails to sell when the reserve price is p as m(p) = v[ϵ(p)(1, 1), p] and note that m(·)
is a strictly increasing and continuous function. As previously shown, m(1) = v0(1, 1) > θs

and m(θs) < θs. By the intermediate value theorem, there exists value p ∈ (θs, 1) such that

m(p) = θs. This concludes the proof.

□

The next result characterizes the revenue associated with a one-shot auction and compares

revenues. First, define Hj0(.) to be the distribution of the jth highest valuation in period 0 and

given a minimal valuation participating p ∈ [θs,p], the revenues are

(E41) r0(p,H0) = θs +

∫ w0(1,1)

p
x− θs −

1−H0(x)

h0(x)
dH2

0 (x) = θs +

∫ w0(1,1)

p
ϕ(x)− θsdH

1
0 (x)

This equation just defines the payoff to an auction in terms of the virtual value of the highest

valuation, i.e. in terms of ϕ(x) = x − 1−H0(x)
h0(x)

. Next, observe that in an efficient auction

p = θs, so re0 = r0(θs, H0. Further note that ϕ(x) ≤ x and in the case where H0 is regular, the

optimal auction with full commitment rest p∗ to solve ϕ(p∗) = θs. Hence, the efficient auction

is suboptimal and increasing the reserve price in p ∈ (θs, p
∗] will increase payoffs. If p∗ ≤ p,

then the seller can implement his static, optimal auction and the commitment issue is moot;

otherwise, it holds that p∗ > p and the revenue maximizing, feasible auction has a reserve price

of p > θs and

(E42) r0(p,H0)− re0 =

∫ p

θs

ϕ(x)− θsdH
1
0 (x) > 0.

Since for each r0(p,H0) ≤ r0, then this establishes the revenue floor assumption. □



JD R-M Learning and Commitment 61

E2. Proof of Theorem 3.

Proof

I now establish that the equilibrium is essentially unique and provide a condition for when

the revenues with full commitment equal to those without it. This proof has three parts. First,

I prove that the game essentially ends in finite time. Since actions are observable, this implies

that the equilibrium is essentially unique. Lastly, I characterize conditions for which the seller

implements his revenue maximizing terms of trade.

Game effectively ends in finite time.. —

LEMMA 10: There exists a deterministic period T̂ < ∞ such that for every period t ≥ T̂ ,

ut(ht) ≤ θs for every history ht and PBE.

Proof

Suppose for contradiction that there exists some PBE, period t, and history ht+1 such that

vt(ht+1) ≡ inf{x ∈ [0, 1] : Ht(x|ht) = 1} > θs

and that after a large period s ∈ {1, 2, . . .} and small ϵ > 0, it holds that

Et[1−Ht[vt+s(ht+s)|ht+1]
n|ht] < ϵ.

Then the seller’s revenues are bounded above by the probability that the seller trades the

good in the following s periods and he extracts the maximum possible rents from the winner

plus the static optimal period 0 rents in period s times the remaining probability that a buyer

remains who values the good more than the seller, i.e.

rt(ht+1) < vt(ht+1)ϵ+ δsr∗0(1−Ht(θs|ht+1)
n)− ϵ).(E43)

Meanwhile, if the seller runs an efficient auction, i.e. he posts pt = θs, his revenues are

greater than netting his private value θs times the probability that a buyer values the good

more that the seller and otherwise keeping his good:
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ret ≥ θs[1−Ht(θs|ht+1)
n] + δθsHt[θs|ht+1]

n(E44)

This implies that the difference between the expected equilibrium revenues and those at-

tainable by immediately running the efficient auction are bounded above as

rt(ht+1)− ret < vt(ht+1)ϵ+ δsr∗0(1−Ht(θs|ht+1)
n)− ϵ)− θs[1−Ht(θs|ht)

n]− δθsHt[θs|ht]
n

= (vt(ht+1)− δsr∗0)ϵ− δθsHt[θs|ht]
n + (δsr∗0 − θs)[1−Ht(θs|ht)

n].

(E45)

For sufficiently large s, it holds that δsr∗0 < θs and for such values of s, it further holds that

rt(ht)− ret < (vt(ht+1)− θs)ϵ− δθsH[θs|ht]

≤ (vt(ht+1)− θs)ϵ− δθs(1− ϵ)

≤ [1− θs(1− δ)]ϵ− δθs.

(E46)

For ϵ ∈ [0, θs], it holds that rt(ht) < ret . This is a contradiction, because it implies that the seller

strictly prefers running an efficient auction rather than continuing with candidate equilibrium

strategy. This implies that for s solving δs = θs and ϵ = δθs, it holds that by period

(E47) T̂ =
1

δθs

[
ln θs
ln δ

]

the item must either sells or the seller keeps his item. This concludes the proof □

Since the game essentially ends by some finite period T̂ , then all PBE can be characterized

via backwards induction. As actions are further perfectly observable, then the equilibrium is

essentially unique.

Before moving on, I make a quick remark. Suppose that agents interact in period t =

∆t, 2∆t, . . . for some ∆t > 0. Then δ = e−r∆t for some discount factor r > 0 and one can

construct a value s∆t instead of s and it holds that by period T̂ , the game must end. In other

words, as ∆t goes to zero, the number of times an item is re-auctioned may diverge. But the

period after which the game ends does not.

Characterizing Full Mitigation.. — I lastly prove that the condition 9 is sufficient for the

seller to implement his optimal auction under full commitment. For every type τi excluded from
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the optimal static auction, it holds that θs ≥ ϕ̄[w0(τi)]. Therefore, if inequality 9 holds, then

(E48) w(τi, p
∗) ≤ ϕ(τi, p

∗) ≤ ϕ̄(τi, p
∗) ≤ θs;

where v(τi, p
∗) is the buyer i’s valuation conditional on the good failing to sell when the

seller posted p0 = p∗ = p∗0, buyers expected to good to not re-auction the good and yet no buyer

submitted a valid bid. Therefore, inequality E48 implies that the seller values the good more

than his buyers and he cannot gain from re-auctioning his good as he must accept a payment

below his valuation. □


