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Abstract

An experimenter (E) learns about a payoff-relevant state. He does so by flexi-
bly managing a jump-diffusion signal with state-dependent dynamics. He controls
the diffusion’s precision and the arrival rate of jumps. If jumps never arrive, the sig-
nal is feasible in Moscarini and Smith (2001). E further faces costs rising convexly
with the flow amount of information generated. My main result is that, in contrast
to Zhong (2022), restricting attention to pure-diffusion signals is without loss. In-
tuitively, E’s problem can be reformulated into a dynamic, constrained information
acquisition problem. In said problem, E picks how much information to acquire from
the diffusion and jumps, but some information must be acquire from the diffusion.
Also, both types of information are perfect substitutes and (thus) managing a pure-
diffusion signal is without loss. In a numerical example, I further illustrate how (if
ever) information from jumps might be used.

I study the problem of sequential experimentation i.e., an experimenter (E) learns about
a state by explicitly managing a data generating process (DGP). In particular, E flexibly
controls a jump-diffusion’s state-dependent dynamics and faces costs convexly increasing
in the flow amount of information generated. Suppose that E could abstract away from
managing a DGP and, instead, acquires information over time. In such case, Zhong (2022)
proved that it is optimal to acquire a compensated, pure-jump process signal confirming
the most likely state. When E is required to flexibly experiment, however, I find a unique,
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pure-diffusion signal. In other words, it is without loss of generality that the experimenter
restricts attention to a DGP allowing him to gradually learn over time.

Wald (1947) first studied the problem of sequential experimentation. E acquires a se-
quence of iid random variables (i.e., signals) that are informative of an unknown, payoff-
relevant state. Each signal models a random process through which a datum is generated: a
DGP. E decides when to stop experimenting and make an irreversible decision. Moscarini
and Smith (2001, MS) extended this setting by allowing the experimenter to flexibly con-
trol a diffusion’s precision whose drift depends on the state. Intuitively, E flexibly controls
the precision of the data generated over time. Such extension allows for a tractable charac-
terization of the optimal experiment. MS further assume the experimentation flow costs
increase convexly in the signal’s precision. They find that in the optimal experiment’s
precision is strictly increasing in the value of experimenting.

Their model, nevertheless, forces E to only learn gradually i.e., acquiring Gaussian
information. This assumption excludes experiments that infrequently produce very precise
information i.e., Poisson Information. Such information is generated by jump processes
and are commonplace in Physics, Chemistry, Earth Science, etc.. A general setting, in
continuous-time, would allow E to generate both types of information and Zhong (2022,
Z22) finds that such extension matters.

Z22 considered a reduced-form approach. E directly picks a Martingale, Lévy process
for his beliefs i.e., he can acquire both types of information and the problem of managing
a DGP is set aside. He further assumes that costs increase convexly in the flow amount
of information produced. These costs follow from the rational inattention literature e.g.,
Sims (2003), Hébert and Woodford (2021), Caplin et al (2022), Macowiak et al (2023).1

Such assumption is further useful since it allows for the tractable comparison of costs
across belief processes. Z22 finds no value from acquiring Gaussian information.

For an experiment to only generate Poisson information, E must generate noiseless in-
formation. This is a stark assumption as all experiments generate noise and issues pertain-
ing to data cleaning are a key concern in experiment design. For example, data cleaning
takes 60 percent of data scientists’ (Press 2016) and 80 percent of clinical researchers’

1Said approach has garnered critique from Denti et al (2022) since this cost structure is inconsistent with
a model of experiment specific costs.
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(Rozario et al 2017) time.
For this reason, I expand the set of experiments considered in MS to allow for exper-

iments generating data via jumps. This allows me to study how an agent optimally and
flexibly learns when they are required to generate the utilized data themselves. In addition,
I adopt the rational inattention cost function to tractably compare the costs of experiments.
This allows me to tractably and systematically model the way in which costs are modeled
in this general setting.

I then ask the following question. Is E strictly better off now that he can acquire
both types of information? The answer is no and the intuition is straightforward. E’s
problem can be reformulated into one where he directly picks how much flow Poisson
and Gaussian information to acquire. But the technological constraint forces E to always
generate some Gaussian information. I also find Gaussian and Poisson information to be
perfect substitutes. Thus, there is no added value from generating Poisson information.

This observation implies that some pure-diffusion experiment is optimal, but it does
not characterize said experiment. How does the change in cost function alter the opti-
mal experiment? I find that the flow amount of information acquired in my model is a
Markov function of the current value of experimentation and precisely equals to MS’s
policy function for the diffusion’s precision. The value of experimentation differs in both
settings, however.

Next, I consider the binary state and action case to characterize when the experiment
is unique and how information via jumps can be optimally used. In most cases, I find that
the pure-diffusion experiment described above is the unique, optimal experiment. Never-
theless, when it may be optimal to acquire some Poisson information, I find that E only
acquires information right before he stops experimenting.

The rest of the paper proceeds as follows. Section 1 presents the model. Sections 2,3,
4, 5, and 6 state my results. Lastly, I conclude in section 7.
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1 Model

I now present the model. A Bayesian experimenter (E) with Bernoulli preferences picks
from a finite set of alternatives A, where |A| ≥ 2. E’s payoff depends on an unknown
state x ∈ X ≡ {xi}ni=1 for n = 2, 3, . . . and his initial beliefs are p ≡ (pi)

n
i=1 ∈ ∆n−1

where ∀i, pi ≡ Pr(x = xi) > 0. His Payoffs are thus a function u : A × X → R

and I assume that u(·, ·) ≫ 0 and for each pair xi and xj where xi ̸= xj , it holds that
argmaxa∈A u(a, xi) ∩ argmaxa∈A u(a, xi) = ∅. This means that never making a choice is
strictly suboptimal and the state matters when making an optimal choice. Next, E is not
required to immediately decide. Instead, he can experiment and make a decision at some
time T ∈ [0,∞). The details of how he experiments are presented below. However, if at
time T he holds beliefs pT ∈ ∆n−1, his payoff from making a decision are

F (pT ) ≡ max
a∈A

n∑
i=1

piTu(a, xi). (Terminal Payoffs)

1.1 Information Acquisition Problem

Signals I now describe the experimentation problem. E picks a continuous-time signal
process and a signal-adapted stopping time T < ∞. Heuristically, the signal is the data
generating processed generated by an experiment, while the stopping time is a rule when
experimentation stops and a decision is made. An admissible signal s ≡ (st) is a jump-
diffusion process where s0 = 0 and at each time t ∈ [0,∞)

dst = µ(x) dt +
dBt√
ht

+ dNt. (1)

B ≡ (Bt) is a Brownian motion with precision ht ≫ 0 and drift µ(x) where µ :

X → (−∞,∞) is an injective function. Meanwhile, N ≡ (Nt) is an B-independent
compensated jump process that jumps by ∆k ∈ R (∆1 < ∆2 < . . . < ∆K and K =

1, 2, . . . is finite) at a rate of λikt ≥ 0 at time t iff x = xi. I assume that (ht, ((λikt)
n
i=1)

K
k=1)

satisfy the standard the standard Lipschitz condition which ensuring that (st) admits a
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weak solution2, but no additional restrictions are made on the set of feasible parameters.3

Lastly, note that if one were to force λikt = 0 for each i, k, t, then the set of experiments is
precisely the same as in MS.

Information and Costs I now model an experiment’s flow costs. The costs of running
an experiment increase in the flow amount on information generated. To do so, I first
derive a measurement of the flow amount of information generated as in Z22.

Let H : ∆n−1 → R ∈ C2 (e.g., entropy) be a strictly concave function such that its
second derivative is bounded below and away from 0 i.e., for each belief pt ∈ ∆n−1 and
x ∈ Rn−1 such that x ̸= 0, there exists some ϵ > 0 such that x′D2H(pt)x < −ϵ. Further
consider the belief process (pt ≡ pit(x = xi | {sτ : τ ∈ [0, t]})) ⊂ ∆n−1. The flow
amount of information generated by (st) at time t is It ≡ −LH(pt) where L(·) is the
infinitesimal generator for (pt) i.e., for each function f , Lf(pt) ≡ limdt→0

f(pt)−f(pt−dt)

dt if
said limit exists. Lastly, the flow cost of experimenting at time t is c(It) for some c(·) ≫ 0

being a strictly increasing, convex, and twice differentiable function.

Payoffs I now describe payoffs. If E picks signal s—generating beliefs (pt) and infor-
mation (It)—and an s-adapted stopping time T , then at time t ( ≤ T ) expected payoffs
are

Vt(s, T ) ≡ Et

[
e−r(T−t)F (pT )−

∫ T

t

c(It)e
−(τ−t)dτ | {sτ : τ ∈ [0, t]}

]
(Payoffs)

Given initial beliefs p, E’s optimization problem is

V (p) = max
s,T

V0(s, T ). (Unconstrained Problem)

Alternatively, E may be forced to only acquire pure-diffusion experiments:

2See for example Oksendal and Sulem (2019) among others
3I choose this model for its parsimony. One could allow the experimenter to observe a multidimensional

Jump-diffusion and for jumps to take on a finite number of jumps—for instance. However, the results extend
to such setting, but the statements become more complex at no conceptual benefit.
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U(p) = max
s,T

V0(s, T ) s.t. ∀i, t, λit = 0 a.s. (Constrained Problem)

I conclude by noting that U(p) ≤ V (p), because the set of feasible experiments in the
constrained problem is a strict subset of the feasible set in its unconstrained counterpart.

I now present my results. The proof has 3 parts. First, I explicitly derive beliefs.
Next, I use standard techniques from stochastic calculus to derive a value function for the
restricted and unrestricted problems. I then conduct a sequence of change of variables
which makes my main result straightforward.

2 Belief dynamics

I first characterize how a function of Bayes beliefs, derived from (st), changes over time.

Lemma 2.1. Fix s = (st). Let (pt) be the s-adapted Bayes consistent beliefs, then ∀f :

∆n−1 → R ∈ C2

Lf(pt) =
ht

2

∑
ij

fij(pt)pitpjt(µi−µt)(µj−µt)+
K∑
k=1

λkt[f(νkt)−f(pt)−∇f(pt)
′(νkt−pt)]

(2)
for fij(pt) ≡ ∂pi∂pjf(pt), λkt ≡

∑
i pitλikt, µt ≡

∑
i pitµi, and for each k = 1, 2, . . . , K,

νkt ≡ (νikt ≡
pit−λikt−

λkt−
), µ̃t ≡ (pit(µi − µt))

n
i=1, pt− = limdt→0 pt−dt.

I now sketch the proof, but delegate the derivation to appendix A.1. Since the jump
and diffusion process are independent, I can approximate each process a different, con-
ditionally independent binomial process. Fix some small dt> 0, the diffusion can be
approximated by a binomial that jumps up by

√
dt/ht with probability (1 − µi

√
htdt)/2

and jumps down by −
√

dt/ht with probability (1 + µi

√
htdt)/2 iff x = xi. Meanwhile,

the jump process can be approximated by a binomial process that for each jump of size
∆k with probability λiktdt and by 0 with probability 1− λiktdt iff xi = x.

I then derive Bayes posterior beliefs conditional on observing the process (ptdt) and
approximate Lf(ptdt). I consider two cases. Case 1, the jump process jumps. Bayes
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posterior beliefs can disregard the diffusion process and only depend on the prior belief
and the state-dependent arrival rate of jumps. The change in beliefs is then f(pt)−f(pt−).

Case 2, the jump process does not jump. Bayes posterior beliefs then on both pro-
cesses. I approximate Lf(ptdt) ≈ f(pt)−f(pt−dt)

dt using a quadratic Taylor approximation
centered at pt−dt. I conclude by noting that this argument is left (intentionally) as standard
as possible and that for a jump-less process the generator (i.e., L(·)) simply requires taking
λit = 0 for each i and t.

3 Re-formulating the Experimentation Problems

Now that the beliefs dynamics are well-defined, I define the cost function, derive the
Hamilton-Jacobi-Bellman (HJB) that the experimenter’s problem must solve, and then
reformulate it in a more useful fashion. First, I characterize the costs function. Fix
some signal s = (st) process, then at each time t the amount of information generate
is It = −LH(pt) = I(ϕt, pt) where

I(ϕt, pt) ≡

diffusion terms︷ ︸︸ ︷
ht

2

∑
ij

Hij(pt)pitpjt(µi − µt)(µj − µt)

+
K∑
k=1

λkt[H(pt)−H(νkt) +∇H(pt)
′(νkt − pt)]︸ ︷︷ ︸

Poisson terms

(3)

Now that I derived an expression for the amount of information generated, the flow costs
are c(It). The formula above further illustrates several points of note. First, the signal
precision enters linearly into the total amount of information and separable from the infor-
mation derived from jumps. This is a feature of the continuous-time modeling choice and
plays a key role in the result below.

Next, I derive an expression for the HJB describing E’s optimal experimentation prob-
lem. E’s problem can be written as a function of his beliefs pt at each time t. By
the principle of optimality, if at some belief pt ∈ ∆n−1, V (pt) > F (pt), then E picks
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ϕt ≡ (ht, (λikt)) to solve

rV (pt) = max
ϕt

LV (pt)− c[I(ϕt, pt)] s.t. ht > 0, ∀i, λit ≥ 0 (4)

Oksendal and Sulem (2019) establish that the HJB equation admits a viscosity solution.
This is because E’s problem reduces to picking a locally Lipschitz collection of parameter
process. They even extend the existence proof to a much broader set of problems than the
one studied in this paper. This HJB equation, however, is far too general to allow for a
tractable characterization. Instead, I consider a change of variables that clarifies the struc-
ture of the value function. Assume that E picks a Bayes posterior belief conditional that
a jump arrives νt4 , the amount of information that he acquires from jumps jt (i.e., his to-
tal amount of Poisson information), and from the diffusion βt (his Gaussian information).
More rigorously, define at each time t,

∀k, jkt ≡ λt[H(pt)−H(νkt)−∇H(pt) · (pt − νkt)]

and
βt ≡

ht

2

∑
ij

Hij(pt)pitpjt(µi − µt)(µj − µt).

The total amount of information is then It = βj +
∑K

k=1 jkt and the generator for each
function f : ∆n−1 → R ∈ C2 becomes Lf(pt) = βtL(f, pt) + jtG(f, pt, νt) where

L(f, pt) ≡
ht

2

∑
ij fij(pt)pitpjt(µi − µt)(µj − µt)

ht

2

∑
ij Hij(pt)pitpjt(µi − µt)(µj − µt)

and
G(f, pt, νkt) ≡

f(νkt)− f(pt)−∇f(pt)
′(νkt − pt)

H(pt)−H(νkt) +∇H(pt)′(νkt − pt)
.

I can now state a more useful reformulation of the value function if F (pt) < V (pt), then

4In principle he can only pick n− 1 posterior beliefs as the beliefs regarding the nth state have to be the
residual enduring that beliefs are positive and add up to 1.
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rV (pt) = max
(jkt,νkt),βt

βtL(V, pt) +
K∑
k=1

jktG(V, pt, νkt)− c

(
βt +

K∑
k=1

jkt

)
(5)

s.t. (jkt, νkt, βt) ∈ RK+Kn+1
+ , βt > 0,∀k

∑
i νikt = 1

The added value of this change of variables is made apparent above when one looks
at the cost function. Notice that as the Poisson and Gaussian terms were linearly separa-
ble, Poisson and Gaussian information are perfect substitutes and E must acquire some
Gaussian information. This last point follows from E’s need to manage the precision of
his information—a consideration that never becomes salient when one works directly in
the belief space.

4 Restricted Problem

My main result is that there exist an optimal, pure-diffusion experiment. In this sub-
section, I assume that the E is restricted to run a pure-diffusion experiment. I show that
the optimal experiment (within this set) can be characterized by modestly adjusting the
proofs in Moscarini and Smith (1998, 2002). I find that the flow amount of information
acquired by the E is a Markov function of the value of experimenting.

First consider the simplest case of interest. Let x, a ∈ {±1}, µ(x) = x, initial belief
that x = 1 be p ∈ (0, 1), and payoffs π(a, x). I assume that ∆1 ≡ π(1, 1)− π(−1, 1) > 0,
∆−1 ≡ π(−1,−1) − π(1,−1), and ∆0 ≡ π(−1,−1) − π(−1, 1) > 0 i.e., the optimal
action is a = x. These assumptions imply that there exists a crucial belief p̂ ∈ (0, 1) such
that when pt ≡ Prt(x = 1) = p̂, the experimenter is indifferent between both choices (i.e.,
π(−1, 1) + p̂∆1 = π(−1,−1) − p̂∆−1) and it is optimal to pick a = 1 iff pt ≥ p̂. It also
implies that the payoff from making a decision is

F (pt) ≡ max
a∈{±1}

ptπ(a, 1) + (1− pt)π(a,−1) =

π(−1,−1)−∆−1pt if pt ≤ p̂

π(−1, 1) + ∆1pt if pt ≥ p̂
(6)

I now characterize the optimal experiment. First, denote the E’s time t Bayes posterior
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belief that x = 1 given that he observes a path {sτ | τ ∈ [0, t]} as pt. Given that the prior
belief is p, and the signal process satisfies s0 = 0 and at each t ≥ 0, dst = xdt+ dBt/

√
ht

, then Lipster and Shiryaev’s (1977) theorem 9.15 establishes that p0 = p- and at each time
t ≥ 0 beliefs evolve following

dpt = pt(1− pt)
√

htdB̄t (7)

where (B̄t) is a Brownian motion such that B̄0 = 0 and dB̄t = dst − ptdt. Next, notice
that the flow amount of information (i.e., βt) generated when the current belief is pt and
signal precision is ht is βt = (ht/2)[pt(1 − pt)]

2[−H ′′(pt)] . Hence, one can reformulate
belief dynamics in terms of βt as

dpt =
√

2βt/[−H ′′(pt)]dB̄t. (8)

Notice that the assumption that the second derivative of H(·) was bounded below a con-
stant −ϵ for ϵ > 0 implies that

√
2βt/[−H ′′(pt)] <

√
2βt/ϵ, so if the control (βt) satisfies

the standard Lipschitz conditions, then the processes (pt) and (st) will have unique, weak
solutions.

Next, following the appendix B proof in Moscarini and Smith (1998), the current
belief (i.e., pt) is a sufficient statistic and restricting attention to Markov controls that are
a function of said beliefs is also without loss of generality. This is because there is a one-
to-one correspondence between the elements of the natural filtration generated by (st),
for each fixed control process (ht), and belief process (pt). Thus, one can work with the
belief process (pt) rather than the signal process (st) and the change of variable plays no
role in this exercise. In addition, the conditions on c(·) and H(·) ensure that the rest of the
argument in appendix B still follow. This implies that the value of experimentation and
the optimal control can be written as a function of the current belief pt as U(pt) and β(pt),
respectively. Said control further solves

5The authors further establish the dynamics for beliefs when there are finitely many n ≥ 2 states and
the signal is a pure-diffusion. Said dynamics are associated with precisely the same generate as in t2.1 when
λxjt = 0 for each x, j, t.
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rU(pt) = max
βt>0

βtL(U, pt)− c(βt) (9)

where L(U, pt) ≡ U ′′(pt)/[−H ′′(pt)]. The first order condition (FOC) further implies
that c′(βt) = L(U, pt). By the principle of optimality, it consequently holds that for each
current belief pt such that U(pt) > F (pt), then rU(pt) = βtc

′(βt) − c(βt) or that βt =

β(u) = f−1[rU(pt)] for f(x) ≡ xc′(x)− c(x).
Note that β(·) precisely equals the control for information precision in MS (i.e., h(·)),

but that the value of experimentation in their setting is V (·) and V (·) ̸= U(·), in general.
Further note that proposition 7 in MS can be re-stated for the current setting be replacing
β(·) for h(·), so the insights found from the special case studied above extends to a setting
with finitely many states and actions i.e., n,#A ≥ 2.

I conclude this section by illustrating how U(·) is derived for a particular example.
Suppose that c(x) = x2/2 for each x ≥ 0, r = 0.01, ∆1 = ∆−1 = ∆0 = 1. This means
that the experimenter wants to simply match the state and p̂ = 1/2. Plugging the FOC into
the value function derived from the principle of optimality implies that

if U(pt) > F (pt), then rV (pt) =
{[L(U, pt)]}2

2
(Current Model)

Next, it remains the case that there exist a pair of cutoff beliefs 0 < p̃ < p̂ < p̄ < 1 such
that E experiments iff pt ∈ (p̃, p̄) and the boundary conditions are that

∀p ∈ {p̃, p̄}, U(p) = F (p) (Value Matching)

and
∀p ∈ {p̃, p̄}, U ′(p) = F ′(p). (Smooth pasting)

A similar set of standard boundary conditions are also imposed in MS. Figure 1’s
left panel illustrates the terminal payoff from making a decision (F (p), in grey), the value
of experimenting in MS when c(ht) = ht/2 (V (p), in red), and U(p) in black. On the
other hand, the right-hand panel plots the flow amount of information acquired as a func-
tion of pt in both settings. It shows that, relative to MS, the experimentation interval is
shifted inward, but E always acquires more information. This is analogous to increasing
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the discount factor r in MS.

(a) Value functions (b) Policy functions

Figure 1: Optimal policy and value function comparison between the MS model (de-
noted as case 1) and my own (case 2).

5 Main Result

This section presents my main result. I will first state the result and then provide the proof.

Theorem 5.1. ∀pt ∈ ∆n−1, U(pt) = V (pt).

This theorem states that restricting attention to only pure-diffusion experiments is with-
out loss of generality. The proof goes as follows. First, it is immediate that for each
pt ∈ ∆n−1, it must be that U(pt) ≤ V (pt). This is because the previous lemma established
that there exists a control (βt) that maximizes U . Define a new control for the general
problem as ϕ̃ ≡ {β̃t, (j̃kt, ν̃kt)} such that β̃t = βt and for each k = 1, 2, . . . , K, j̃kt = 0

and νkt = pt almost surely. Control ϕ̃ is feasible in the general problem and attains a
payoff of V (pt, ϕ̃) = U(pt) for each pt. However, said control need not be optimal, so
U(pt) = V (pt, ϕ̃) ≤ V (pt) for each pt.

The opposite inequality—i.e., U(pt) ≥ V (pt)—is more subtle. First, suppose that at
some belief pt, V (pt) = F (pt). Since at each belief pt, E can always stop experimenting
and make a decision, then F (pt) ≤ U(pt). As a consequence, it holds that V (pt) = U(pt)

and it suffices to show that the result holds for pt ∈ C where C ≡ {pt ∈ ∆n−1 : V (pt) >

F (pt)}.
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I now show that if an optimal experiment acquires information via jumps, it cannot
yield the E more payoff than the experiment characterized by control ϕ̃. Suppose that a
control ϕ′ = {β′

t, (j
′
kt, ν

′
kt)} attains the maximum of the HJB equation 5. At each belief

pt ∈ C, the control must satisfy two conditions. The first condition is that the control must
satisfy the interior first order condition i.e.,

∀t, pt ∈ C, c′(It) = L(V, pt)

for I ′t ≡ βt +
∑K

k=1 jkt. Likewise, if for some jkt > 0 at belief pt, then it must be the
case that c′(I ′t) = G(V, pt, νkt). The second condition is that, by the principle of optimality,
for each pt ∈ C, V (pt) satisfies

rV (pt) = β′
tL(V, pt) +

K∑
k=1

j′k(pt)G(V, pt, ν
′
kt)− c(I ′t) = I ′tL(V, pt)− c(I ′t).

Notice that the second equality follows from the observation that the marginal benefits both
types of information must be equalized whenever E pick a strictly positive amount of both
types of information. If, on the other hand, jkt = 0 at the optimum, then j′k(pt)G(V, pt, ν

′
kt) =

0, so it does not affect the validity of the second equality. Moreover, said equality clari-
fies that what matters is the total amount of information acquired and the composition of
information is a second-order consideration.

Define ϕ̄ ≡ {β̄t, j̄kt, ν̄kt} such that at each belief pt, β̄t = I ′t and for each k =

1, 2, . . . , K, j̄kt = 0 and ν̄kt = pt almost surely. Then, by construction, ϕ̄ satisfies the
first order conditions for the optimization problem and for each pt ∈ C, it holds that
β̄tL(V, pt) − c(β̄t) = I ′tL(V, pt) − c(I ′t) = rV (pt). Consequently, if V (pt; ϕ̄) = V (pt).
Moreover, the control β̄ = (β̄t) and note that it is admissible in the restricted problem, so
its cannot be strictly greater than U(pt) at each belief pt. Consequently, V (pt) ≤ U(pt)

for each pt as desired.

Page 13



Ramos-Mercado Flexible Experimentation

6 n = #A = 2

I now return to the binary state and action case presented in subsection 4 and show that (in
such case) the pure-diffusion experiment is the only possible experiment. Intuitively, if an
experiment is optimal and for some current belief pt generates information via jumps, then
the posterior belief conditional on a jump arriving (denoted as νt) must satisfy a first order
condition (FOC) and not equal to its prior. I show that both conditions are incompatible.

I first state a useful corollary.

Corllary 6.1. The function U(·) is strictly convex.

The proof for this corollary is a simple application of the FOC that βt has to satisfy
and the principle of optimality. Next, I provide a condition needed for the result.

Assumptions 6.2. Assume that limp↗1H
′(p) = −∞, limp↘0H

′(p) = ∞.

I now state the lemma.

Lemma 6.3. If assumption 6.2 holds, then for every current belief pt ∈ (p̃, p̄) such that

there exist an experiment for which the E acquires information via Poisson jumps, the

belief posterior of a jump νt ∈ [0, p̃] ∪ [p̄, 1] satisfies

F ′(νt)− U ′(pt)

U ′′(pt)
=

H ′(νt)−H ′(pt)

H ′′(pt)
.

I now present the proof. Observe that the function H(·) was exogenously defined
in the solution of the problem and the value of experimenting U is the same function
characterized in section 4. Consequently, for each belief pt such that U(pt) > V (pt)

(i.e., the experimenter benefits from experimenting), the posterior belief νt ∈ [0, 1] simply
maximizes lnG(U, pt, νt) i.e.,

max
νt∈[0,1]

ln[U(νt)− U(pt)− U ′(p)(νt − pt)]− ln[H(pt)−H(νt) +H ′(pt)(νt − pt)]. (10)

Noe that since U(·) is strictly convex and H(·) is strictly concave, then he expressions
inside the logs (i.e., U(νt)−U(pt)−U ′(pt)(νt−pt) and H(pt)−H(νt)+H ′(pt)(νt−pt)) are
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strictly positive. In addition, assumption 6.2 implies that the FOC is interior, so νt ∈ (0, 1)

and said condition is

[U ′(νt)− U ′(pt)] = [H ′(pt)−H ′(νt)]G(U, pt, νt) (11)

If information is acquired via jumps, then the FOCs found in the main result imply that
G(U, pt, νt) = U ′′(pt)/[−H ′′(pt)]. Moreover, as Z22 points out, in any optimal experi-
ment, the posterior belief after a jump arrive must prompt the experimenter to stop exper-
imenting and make a decision. Combining these observations with equation 11 imply that
νt ∈ [0, p̃] ∪ [p̄, 1] and

U ′(νt)− U ′(pt)

U ′′(pt)
=

H ′(νt)−H ′(pt)

H ′′(pt)
. (12)

This concludes the proof.

(a) Zhong (2022). (b) Current Paper

Figure 2: Current belief zones where acquiring information via jumps is feasible
(green), posterior beliefs conditional on a jump arriving (red), and prior belief (black).

I now return to the example presented in section 4. Figure 2 draws the subset of
experimentation beliefs for which E might acquire information via jumps (in green), the
current belief (in black), and the posterior belief (in red). In Zhong (2022), E acquires
information via jumps iff at a given current belief he wishes to experiment. In contrast,
there does not exist any current belief for which E wishes to acquire information via jumps
in my setting. The next subsection, however, does find a case when acquiring information
via jumps might be optimal for a strict subset of the experimentation interval.
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6.1 Comparative Statics

Increasing r First, I increase r from 0.001 to 0.1 and plot the outcome in figure 3.
Making the experimenter more impatient lowers U(·), but does not affect the payoff from
making a decision. As a consequence, the interval of beliefs shifts inwards, but (as in MS)
the policy function remains u-shaped and shifts up. Lastly, the optimal, pure-diffusion
experiment remains the unique, optimal experiment.

(a) Change in U(·). (b) Change in β(·). (c) Change in ν(·).

Figure 3: Change in optimal experiments when r increases.

Increasing F (·) Next, I replace F (·) by 2F (·)—figure 4. The pure-diffusion experiment
remains the unique optimal experiment. Meanwhile, the left-hand panel shows that the
experimenter’s payoff from experimenting is more than doubled relative to the benchmark
in figure 2 but the experimentation interval is approximately the same. Lastly, the central
sub-figure shows that the E acquires more flow information than in the benchmark case,
but he acquires less than twice the amount of information.

(a) Change in U(·). (b) Change in β(·). (c) Change in ν(·).

Figure 4: Change in optimal experiments when F (·) shifts up to 2F (·).

Page 16



Ramos-Mercado Flexible Experimentation

Decreasing c(·) Next, I change c(It) to c(It)/2—figure 5. I first find that the payoff from
experimentation shifts down uniformly and the experimentation interval shrinks inward,
because (as shown in the central plot) the E always acquires more flow information than
in the benchmark. I lastly find that the experimenter can benefit from acquiring Poisson
information. However, he only acquires said type of information when his beliefs are near
the boundaries of the experimentation region.

(a) Change in U(·). (b) Change in β(·). (c) Change in ν(·).

Figure 5: Change in optimal experiments when c(·) shifts down uniformly to c(·)/2.

Time-averaged experimentation costs The last comparative static pertains changing
the cost function from c(It) to rc(It)—figure 6. I first find that the optimal experiment
characterized in section 4 is unique i.e., Poisson information is suboptimal. Next, I find
that (relative to the benchmark, the value of experimenting is flat and thus the flow amount
of information acquired is exponentially less than in the benchmark case.

(a) Change in U(·). (b) Change in β(·). (c) Change in ν(·).

Figure 6: Change in optimal experiments when c(·) shifts down uniformly to rc(·).
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7 Conclusion

This paper shows that the problems of sequential experimentation and information ac-
quisition are different. This is because the dynamics behind data acquisition matter. To
experiment is to carefully manage a data generation process that (by its very nature) pro-
duces noisy information. As a consequence, an experimenter not only determines what
kind of information he wishes to acquire, but he also must process or clean said data. This
added tasks qualitatively changes the tradeoffs faces relative to a decision-maker who is
tasked to acquire pre-existing information.

This result further implies that (in many economic contexts) disregarding the process
of information generation results in conclusions that could never be applied in real-world
contexts. It is, therefore, important for subsequent work in dynamic experimentation,
information design, Bayesian persuasion, et cetera to ensure that the information acquired
in the model could be conceivably acquired in real-world applications. Otherwise, the rich
set of new results in these burgeoning fields cannot be used in many real-world application
or inform policy.

The paper lastly points out that the particular functional form of experimentation costs
matter. At the optimum, the level of experimentation; the type of information to acquire;
and when is experimenting worthwhile are all sensible to the choice of cost function.
This implies that future, empirical research into experimentation should provide proper
estimates of said costs.
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A Proofs

A.1 Deriving dynamics.

In this section, I present the characterization of beliefs. Informally, I approximate the
signal process in discrete time and take limits.

Approximating signals in discrete-time Fix some small time interval dt> 0, then an
admissible signal s = (st) can be approximated at times t = 0, dt, . . . as s0 = 0 and
dst ≡ st+dt − st

dst = ddt
t +

K∑
k=1

dJdt
kt (13)

for (ddt
t )

∞
t=0 is a sequence of independent random variables such that at time t, ddt

t =

±
√

dt/ht−dt with probability [1 ± µi

√
ht−dtdt]/2 iff x = xi. Meanwhile, for each k =

1, 2, . . . , K, (Jdt
kt)

∞
t=0 is a sequence of independent random variables such that dJdt

kt = ∆k

with probability λikt−dtdt, dJdt
kt = 0 otherwise, and the dJdt

kt and dJdt
k′t are independent for

each t, k, k′ . This means that the independent diffusion and jump processes are weakly
approximated. Also, the experimenter picks the parameters for realizations observed at
time t = 0dt, 2dt, . . . at time t−dt.

Approximating beliefs after a jump I first consider the case when there are jumps.
Suppose that E held beliefs pt−dt = (pit−dt), then the Bayes posterior belief that x = xi

given the jump is approximately equal to

νikt =
pit−dtdtλikt−dt∑n
j=1 pjt−dtdtλjkt−dt

+ o(dt) =
pit−dtλikt−dt∑n

j=1 pjkt−dtλjkt−dt
+ o(dt)

where the error term o(dt) (such that limdt↘0 o(dt)/dt = 0) follows from the ob-
servation that distribution of ddt

t approximately gives equal weight to both outcomes as
dt goes to 0. Further observe that as dt goes to 0, it holds that νikt =

pit−λit−
λkt−

where
λkt− ≡

∑n
j=1 pjt−λjkt− . It is further the case that the discontinuous change in beliefs is

dpikt ≡ νikt − pit−dt and it converges to dpikt ≡ νikt − pit− as dt↘ 0.
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Approximating beliefs when there is no jump Next, I characterize how beliefs change
when Jdt

t = 0. Suppose that E observes dst = ±
√

dt/ht−dt, then the probability of
observing said signal realization conditional on x = xi, for i = 1, 2 . . . , n, is

Prt(dst = ±
√

dt/ht−dt|x = xi) =
1

2

[
1± µi

√
ht−dtdt −

K∑
k=1

λikt−dtdt
]
+ o(dt)

Once again, if the prior belief is pt−dt = (pit−dt), then the Bayes posterior beliefs are

pit =
pit−dt

[
1± µi

√
ht−dtdt − dt

∑K
k=1 λikt−dt

]∑n
j=1 pjt−dt

[
1± µj

√
ht−dtdt − dt

∑K
k=1 λjkt−dt

] + o(dt)

=
pit−dt

[
1± µi

√
ht−dtdt − dt

∑K
k=1 λikt−dt

]
1± µt−dt

√
ht−dtdt − dt

∑K
k=1 λkt−dt

+ o(dt)

where µt ≡
∑n

i=1 pitµi and for each k = 1, 2, . . . , K, λkt ≡
∑K

i=1 λikt. The change in
beliefs dpit ≡ pit − pit−dt can be the approximated as

dpit =
pit−dt

[
± (µi − µt−dt)

√
ht−dtdt − dt

∑K
k=1(λikt−dt − λkt−dt)

]
1± µt−dt

√
ht−dt − dt

∑K
k=1 λkt−dt

+ o(dt)

and the probability that beliefs change by the amount described above occurs with a prob-
ability of approximately (1± µt−dt

√
ht−dtdt − dt

∑K
k=1 λkt−dt)/2.

Approximating the expected change in beliefs Given the approximations for the change
in beliefs given above, I now take expectations. First, conditional on there being no jump,
the expected change in beliefs equals to
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E[dpit|∀k, Jdt
kt = 0]

dt
=

pit−dt

2dt

[
(µi − µt−dt)

√
ht−dtdt − dt

K∑
k=1

(λikt−dt − λkt−dt)

]

+
pit−dt

2dt

[
− (µi − µt−dt)

√
ht−dtdt − dt

K∑
k=1

(λikt−dt − λkt−dt)

]
+

o(dt)
dt

= −pit−dt

K∑
k=1

(λikt−dt − λkt−dt) +
o(dt)

dt
.

On the other hand, if jump ∆k arrives, for some k = 1, 2, . . . , K, then for each i =

1, 2, . . . , n

E[dpit|Jdt
kt = 1] = νikt − pit−dt.

As a consequence, the unconditional change in beliefs just equals to the expectation over
the conditional expectations i.e.,

E[dpit]

dt
=

K∑
k=1

dtλkt−dt

dt
E[dpit|Jdt

kt = 1] +

(
1− dt

K∑
k=1

λkt−dt

)
E[dpit|∀k, Jdt

kt = 0]

dt

=
K∑
k=1

(νikt − pit−dt)λkt−dt −
(
1− dt

K∑
k=1

λkt−dt

) K∑
k=1

(λikt−dtpit−dt − λkt−dtpit−dt) +
o(dt)

dt
.

=
K∑
k=1

(νikt − pit−dt)λkt−dt −
(
1− dt

K∑
k=1

λkt−dt

) K∑
k=1

(νikt−dt − pit−dt)λkt−dt +
o(dt)

dt

= −dt
K∑
k=1

λkt−dt

K∑
k=1

(νikt−dt − pit−dt)λkt−dt +
o(dt)

dt
.

The second first line is just the law of iterated expectations and the second line replaced
the conditional expectations derived above and replaces them for the expressions derived
above. The third line exploits the observation that νikt−dt ≡ λikt−dtpit−dt/λkt−dt by Bayes
rule. The last line simplifies the expression and yields that as dt goes to 0, the expected
change in beliefs converges to 0. Ergo, beliefs are a martingale as expected.
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Approximating the co-movement of beliefs The next step is to calculate the co-movement
of beliefs conditional on there being no jumps. This step is important, because the main
result of this proof is to approximate the change of a twice continuously differentiable
function over an instant i..e., the generator for the belief process induced from observing
a given, admissible signal process. Pick some pair of state realizations xi and xj , then

dpitdpjt =
[
htpit−dtpjt−dt(µi − µt)(µj − µt)

1± µ2
thtdt

]
dt + o(dt)

occurs with a probability of roughly (1±µ2
thtdt)/2. The equation above holds, because

the additional terms get multiplied by either a term ϵ1(dt) = dt
3
2 or ϵ2(dt) = dt2. There

terms are of the magnitude o(dt) (i.e., limdt↘0
ϵj(dt)

dt = 0 for each j = 1, 2), so they will not
add anything to the final approximation. Taking expectations of the expected co-movement
then reveals that

E[dpitdpjt|Jdt
t = 0]

dt
= htpit−dtpjt−dt(µi − µt)(µj − µt) +

o(dt)
dt

.

Approximating the generator Lastly, I approximate the generator. Let f : ∆n−1 →
R be a twice continuously differentiable function, then I need to calculate Lf(pt) ≡
E[df(pt)]/dt as dt goes to 0 for df(pt) ≡ f(pt) − f(pt−dt). I can partition the expec-
tation by the law of iterated expectations. If there is a jump of magnitude ∆k for some
k = 1, 2, . . . , K, then

E[df(pt)|dJdt
kt = ∆k] = f(νkt)− f(pt−dt).

Alternatively, there may have been no jumps, then the change in beliefs can be approx-
imated via a quadratic Taylor approximation as
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E[df(pt)|∀k, Jdt
kt = 0]

dt
=

1

dt
E

[
∇f(pt)

′dpt +
1

2
dpitHf(pt)

′dpt|∀k, Jdt
kt = 0

]
+

o(dt)
dt

=
1

dt
E

[ n∑
i=1

fi(pt)dpit +
1

2

n∑
i=1

n∑
j=1

fij(pt)dpitdpjt|∀k, Jdt
kt = 0

]
+

o(dt)
dt

=
n∑

i=1

fi(pt)
E
[
dpit|∀k, Jdt

kt = 0
]

dt
+

1

2

n∑
i=1

n∑
j=1

fij(pt)
E
[
dpitdpjt|∀k, Jdt

kt = 0
]

dt
+

o(dt)
dt

= −
n∑

i=1

fi(pt)pit−dt

K∑
k=1

(λikt−dt−λkt−dt)+
1

2

n∑
i=1

n∑
j=1

fij(pt)htpit−dtpjt−dt(µi−µt−dt)(µj−µt−dt)+
o(dt)

dt

= −
n∑

i=1

K∑
k=1

fi(pt)(λikt−dt − λkt−dt)pit−dt

+
1

2

n∑
i=1

n∑
j=1

fij(pt)ht−dtpit−dtpjt−dt(µi − µt−dt)(µj − µt−dt) +
o(dt)

dt

= −
K∑
k=1

λkt−dt∇f(pt)
′(νkt−pt−dt)+

1

2

n∑
i=1

n∑
j=1

fij(pt)ht−dtpit−dtpjt−dt(µi−µt−dt)(µj−µt−dt)+
o(dt)

dt

The first line states the Taylor approximation to a second degree and the second step re-
states the argument in summation form. Next, the third line exploits the fact that expec-
tations are linear operators, while the fourth line imports the approximations for these
changes in value from the previous sections of the proof. The next equality regroups
terms, while the last re-writes the equation above taking into account that above and re-
places them for the expressions derived above. The third line exploits the observation that
νikt−dt ≡ λikt−dtpit−dt/λkt−dt by Bayes rule.

Next, I calculate E[df(pt)]/dt. Since the probability of a jump of size ∆k is approxi-
mately λkt−dtdt, then the unconditional expectation equals to
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E[df(pt)]
dt

=
K∑
k=1

λktdt
dt

E[df(pt) | Jdt
kt = ∆k]+

[
1−dt

K∑
k=1

λkt

]
×E[df(pt)|∀k, Jdt

kt = 0]

dt

=
K∑
k=1

λkt[f(νkt)−f(pt−dt)]+

[
1−dt

K∑
k=1

λkt

]
×

[
1

2

n∑
i=1

n∑
j=1

fij(pt)ht−dtpit−dtpjt−dt(µi−µt−dt)(µj−µt−dt)

−
K∑
k=1

λkt−dt∇f(pt−dt)
′(νkt − pt−dt)

]
+

o(dt)
dt

=
K∑
k=1

λkt[f(νkt)− f(pt−dt)−∇f(pt−dt)
′(νkt − pt−dt)]

+
1

2

n∑
i=1

n∑
j=1

fij(pt)ht−dtpit−dtpjt−dt(µi − µt−dt)(µj − µt−dt) +
o(dt)

dt

The first equality just applies the Law of iterated expectations and the second equality
replaces the conditional expectations with the approximations that were derived above.
The last equality just collects terms. Lastly, take the limit as dt goes to 0 it yields that

Lf(pt) =
K∑
k=1

λkt[f(νkt)−f(pt)−∇f(pt)
′(νkt−pt)]+

ht

2

n∑
i=1

n∑
j=1

fij(pt)pitpjt(µi−µt)(µj−µt)

This concludes the proof.
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