FOR TODAY

i. Expectations
ii. Probabilistic learning
iii. Perfect Competition

EXPECTATIONS 1

- Suppose that we have a finite set of states of the world $\Omega=\left\{\omega_{i}\right\}_{i=1}^{n}$ and we define probabilities on each event having a vector $\pi=\left\{\pi_{i}=\operatorname{Pr}\left(\omega_{i}\right)\right\}_{i=1}^{n}$
- A function $x: \Omega \rightarrow \Re$ is called a real-valued, random variable (rv)
- There are several things that one may want to define for a random variable.

1. What should one expect for its "common" realization? We answer this with an expectation as

$$
E[x]=\sum_{i=1}^{n} \pi_{i} x\left(\omega_{i}\right)
$$

2. A second question is what should a transformation $f($.) average realization be? Well just define a new $r v$ for every $\omega \in \Omega, y(\omega)=f[x(\omega)]$ and then

$$
E[f(x)]=E[y]=\sum_{i=1}^{n} \pi_{i} y\left(\omega_{i}\right)
$$

EXPECTATIONS 2

- It is also possible for us to have $\Omega=\Re$ and under some technical conditions, we can denote a function $\mathrm{f}: \Re \rightarrow \Re_{+}$that is called the probability density function (pdf)
- The function $f($.$) further satisfies$

$$
\int_{-\infty}^{\infty} f(\omega) d \omega=1
$$

- If x is then a r.v., we have that

$$
E[x]=\int_{-\infty}^{\infty} x(\omega) f(\omega) d \omega, E[f(x)]=\int_{-\infty}^{\infty} f[x(\omega)] f(\omega) d \omega
$$

EXPECTATIONS 3

- An analogous object to pdf is the Cumulative Density Function (CDF) $F: \Re \rightarrow[0,1]$

$$
\forall y \in \mathfrak{R}, F(y)=\operatorname{Pr}(x \leq y)=\int_{-\infty}^{y} f(\omega) d \omega=E[\chi(x \leq y)],
$$

Where $\chi(x \geq y)=1$ if the statement is true and it is otherwise equal to 0
Properties:

1. CDFs are non-decreasing
2. They can always be defined for real valued functions, EVEN when pdfs may not exist
3. Except for a countable set of points in its domain, CDFs must be continuous functions
4. We will use them to model markets.

PROBABILISTIC LEARNING

- Fix a probability space (Ω, Σ, p)
- Assume that one has a family of events $\bar{A}=\left(A_{j}\right)_{j=1}^{K} \subset \Sigma$ such that

1. For every distinct pair $j, j^{\prime}, A_{j} \cap A_{j^{\prime}}=\emptyset$
2. For every j, $P\left(A_{j}\right)>0$,
3. $\cup_{j=1}^{J} A_{j}=\Omega$.

- I will call \bar{A} an "experiment".

LEARNING FROM AN EXPERIMENT

- Suppose that one observes a particular event $A \in \bar{A}$, how does one describe how we perceive how likely are each state of nature? Well,
i. If $\omega \in A^{c}$, then one is certain that ω cannot have occurred.
ii. For all intents and purpose, we deduce that the set of states of nature is A
iii. We now need a probability space with A taking the place of Ω, but we also want it to be "consistent" with what we used to believe.

NEW CONSTRUCTION

- We first define the set of events given A as $\Sigma_{\mid A} \equiv\{C \mid C=A \cap B$ for some $B \in \Sigma\}$
- This means that the states of nature which are inconsistent with what we know (i.e. event A) are disregarded
- We then define a probability function $p(. \mid A): \Sigma_{\mid \mathrm{A}} \rightarrow[0,1]$ as follows
(1) $\forall C \in \Sigma_{\mid A}, p(C \mid A)=\frac{p(C)}{p(A)}=\frac{p(A \cap B)}{p(A)}$ for $C=B \cap A$.

IMPORTANT OBSERVATION

- Fix some sets $A, B \in \Sigma, A \in \bar{A}$.
- Suppose that one has a different experiment \bar{B} such that $B \in \bar{B}$
- Then we can define $p(. \mid B)$ as described before, but now notice that

$$
\text { (Bayes Rule) } P(A \mid B)=\frac{p(A \cap B)}{p(B)}=\frac{p(B \mid A) p(A)}{p(B)}
$$

- This is the starting point for modern science.

IN WHAT SENSE ARE THESE PROBABILITIES CONSISTENT?

- Now, we have a collection of probability function $(p(. \mid A))_{A \in \bar{A}}$
- Pick some set $B \in \Sigma$, then notice that
(2) $\sum_{A \in \bar{A}} p(A) p(B \cap A \mid A)=\sum_{A \in \bar{A}} p(A)\left[\frac{p(A \cap B)}{p(A)}\right]=\sum_{A \in \bar{A}} p(A \cap B)=p\left(\left(U_{A \in \bar{A}} A\right) \cap B\right)=p(\Omega \cap B)=p(B)$
- This is called Bayes consistency: for every event $B \in \Sigma, p(B)=E[p(B \mid A) \mid \bar{A}]$

PERFECT COMPETITION MODEL

- This class focuses on markets with pathologies affecting the performance
- But their performance relative to what?
- I now develop a model of perfect competition that serves as a maxim of efficiency against whom other markets are to be compared
- A competitive market is one where all agents (both buyers and sellers) are irrelevant to the outcome as a whole
- But I will write it in a more game theoric fashion to prepare the class for tnings to come.

ENVIRONMENT 1

- Players: Unit mass of atomic market participants (the set of players is $I=[0,1]$)
- Role types: A market participant can be either buyers or sellers
- Probability of role types: The odds that a market participant is a buyer is $\alpha \in(0,1)$
****Role types are drawn pairwise independently.
- Actions:
i. Buyers: Each buyer i can either buy $a_{i}=1$ or not $a_{i}=0$.
ii. Seller: Each seller j can either sell $b_{i}=1$ or keep his good $b_{i}=0$

ENVIRONMENT 2

- Payoffs: Each market participant has a valuation for the good $\theta \in \Re_{+}$and I assume that it is distributed given a CDF F (.)
- Valuations are drawn pairwise independently (Hic Sunt Dacrones)
i. Suppose that the price ends up being $p \in \Re_{+}$, then payoff are

$$
\begin{aligned}
& \text { (Buyer Payoffs) } u_{i}(\theta, p)=\left\{\begin{array}{c}
0 \text { if } a_{i}=0 \\
\theta-p \text { if } a_{i}=1
\end{array}=a_{i}(\theta-p)\right. \\
& \text { (Seller payoffs) } \pi_{j}(\theta, p)=\left\{\begin{array}{ll}
\theta \text { if } b_{i}=0 \\
p \text { if } b_{i}=1
\end{array}=b_{i} p+\left(1-b_{i}\right) p\right.
\end{aligned}
$$

TIMING

- The market game occurs in the following order
i. Nature draws a role type and a valuation θ
ii. Nature privately informs each buyer of their own role and type
iii. Market participants make choices simultaneously
iv. Agents make choices and clear the market.

STRATEGIES 1

- Heuristically: A strategy is a function from what a player knows to what he can do.
- I assume that market participants follow an anonymous strategy. This means that any two buyers with the same information take the same action
- Q: But what is the information available to a market participant?
- A: He knows whether he is a buyer or seller as wellas his valuation

STRATEGIES 2

- A pure buyer strategy is a function $\sigma_{b}: \Re_{+} \rightarrow\{0,1\}$
- A pure seller strategy is a function $\sigma_{s}: \mathfrak{R}_{+} \rightarrow\{0,1\}$
****Strategies ARE ALWAYS FUNCTIONS.

BUYER PROBLEM

- Assume that a buyer observes a type θ and conjectures a price p, then he picks an action a_{i} solving
(3) $U(\theta, p)=\max _{a \in\{0,1\}} a(\theta-p)$

SELLER PROBLEM

- Assume that a seller observes a type θ and conjectures a price p, then he picks an action b_{i} solving
(4) $\pi(\theta, p)=\max _{b \in\{0,1\}} b p+(1-b) \theta$

EQUILIBRIUM

- An equilibrium is a triple $\left(\sigma_{s}, \sigma_{b}, p\right)$ such that for every θ,
i. $\sigma_{S}(\theta)$ solves $\pi(\theta, p)$,
ii. $\quad \sigma_{b}(\theta)$ solves $u(\theta, p)$
iii. Markets clear: $\alpha E_{F}\left[\sigma_{b}(\theta)\right]=(1-\alpha) E_{F}\left[\sigma_{s}(\theta)\right]$

CHARACTERIZATION 1: BUYERS

- Observe that given a conjectured price p, the buyer strategy strategy is

$$
\text { (5) } \sigma_{p}(\theta)=\left\{\begin{array}{c}
1 \text { if } \theta \geq p \\
0 \text { otherwise }
\end{array}=1-\chi(\theta \leq p)\right.
$$

CHARACTERIZATION 2: SELLERS

- Observe that given a conjectured price p, the buyer strategy strategy is

$$
\text { (5) } \sigma_{s}(\theta)=\left\{\begin{array}{l}
1 \text { if } \theta \leq p \\
0 \text { otherwise }
\end{array}=\chi(\theta \leq p)\right.
$$

CHARACTERIZATION 3: AGGREGATES

- Total demand is then $\alpha E_{F}\left[\sigma_{b}(\theta)\right]=\alpha E_{F}[1-\chi(\theta \leq p)]=\alpha[1-F(p)]$
- Total Surplus is $(1-\alpha) E_{F}\left[\sigma_{S}(\theta)\right]=(1-\alpha) E_{F}[\chi(\theta \leq p)]=(1-\alpha) F(p)$
- By the market clearing condition, the price is whichever value solving

$$
\alpha[1-F(p)]=(1-\alpha) F(p)
$$

Or that

$$
\text { (6) } F(p)=\alpha
$$

PUNCHLINE

- The price ensure that the price equalizes the share of buyers with the share of sellers trading
- In other words, prices serve to move goods from those who don't value goods to those who do.

NEXT CLASS

- Welfare Analysis.

