LECTURE 10---SECOND PART
JORGE DAVID R-M

FOR TODAY

i. Bertrand Competition ("Price Wars")

EXAMPLES

1. Insurance Providers
2. Walmart Entering a new city in the early 2000s
3. ETFs
4. Game Consoles

ENVIRONMENT

- Agents: Unit mass continuum of consumers and $n \in\{2,3, \cdots\}$ producers
- Actions:
i. Consumers: each consumer can choose to buy $\mathrm{x}=\left(x_{j}\right)_{j=1}^{n} \in\{0,1\}^{n}$ and it holds that $\sum_{j=1}^{n} x_{j} \leq 1$.
ii. Producers: each producer j chooses a price $p_{j} \in[0,1]$ to charge for his good
- Payoffs:
i. Consumers: If a consumer buys x units of the goods, his returns become $\sum_{j=1}^{n} x_{j}\left[\theta-p_{j}\right]$
ii. Producers: If a producer charges $p_{j} \in[0,1]$ and a share of consumers $m_{j} \in[0,1]$ buy, then $\pi_{j}\left(p_{j}, m_{j}\right)=\left(p_{j}-c_{j}\right) m_{j}, c_{j}>0$
- Technical Conditions:
i. For each consumer, $\forall \theta \in[0,1], F(\theta)=\theta$ and valuations are drawn pairwise independently
ii. For each pair of producers $i, j, i>j, 0 \leq c_{j} \leq c_{i} \leq 1$

TIMING

i. Nature first draws values for each consumer and privately informs each consumer of their valuation
ii. Producers, simultaneously, post prices $p=\left(p_{j}\right)$
iii. Consumers make their purchase decision
iv. Market closes.

STRATEGIES

- For each producer j, a strategy is a price $p_{j} \in[0,1]$
- A buyer strategy is a function $b:[0,1]^{n+1} \rightarrow\left\{x=\left(x_{j}\right)_{j=1}^{n} \in\{0,1\}^{n} \mid \sum_{j=1}^{n} x_{j} \leq 1\right\}$

CONSUMER PROBLEM

- Given some valuation θ and prices $p=\left(p_{j}\right)$, seller solves

$$
\text { (1) } \operatorname{CS}(\theta, p)=\max _{\left.x=(x)_{j=1}^{n}\right)_{j=1}(0,1)^{n}} \sum_{j=1}^{n} x_{j}\left[\theta-p_{j}\right]
$$

PRODUCER PROBLEM

- Conjecturing a demand for his good $\mathrm{j} b_{j}\left(., p_{j}, p_{-j}\right)$ and prices charges by other producers $p_{-j} \in \Re^{n-1}$, Producer picks a price $p_{j} \in \Re$ solving

$$
(2 j) \pi_{j}\left(p_{-j}, b_{j}\right)=\max _{p_{j} \in \Re}\left(p_{j}-c_{j}\right) E\left[b_{j}\left(\theta, p_{j}, p_{-j}\right)\right]
$$

EQUILIBRIUM

- An Equilibrium is a tuple $\sigma=\left(p=\left(p_{j}\right)_{j=1}^{n}, b\right)$ such that
i. Given σ, each producer j pick a price p_{j} solving (2j)
ii. Given each p and valuation $\theta, b(\theta, p)$ solves (1)
iii. For each producer j, markets clear.

CHARACTERIZATION 1

- We, again, use backwards induction
- Given some price vector p and a valuation θ a consumer buys good j iff

1. $\theta-p_{j} \geq 0$
2. $\forall i \neq j, \theta-p_{j} \geq \theta-p_{i}$ or that $p_{i} \geq p_{j}$

- Demand for each good j is then

$$
\text { (3) } b_{j}(\theta, p)=\left\{\begin{array}{rr}
1 & \text { if } p_{j} \leq \max \left\{\min _{i \neq j} p_{i}, \theta\right\} \\
0 & \text { otherwise }
\end{array}\right.
$$

CHARACTERIZATION 2

- A seller j conjectures prices $p_{-j}=\left(p_{i}\right)_{i \neq j} \in[0,1]^{n-1}$ and he faces two options,
- Option 1: he may pick a price $p_{j} \geq \min _{i \neq j} p_{i} \equiv p_{j}^{-}$and net 0 profits
- Option 2: Pick a price price $p_{j} \leq \min _{i \neq j} p_{i}$ solving

$$
\text { (4) } \pi_{j}\left(p_{-j}\right)=\max _{p_{j} \in\left[0, p_{j}^{-}\right]}\left(p_{j}-c_{j}\right)\left(1-p_{j}\right)
$$

CHARACTERIZATION 3

- The Lagrange equation is then

$$
\text { (5) } \mathcal{L}\left(p_{j}, \lambda\right)=\left(p_{j}-c_{j}\right)\left(1-p_{j}\right)+\lambda_{+}\left(p_{j}^{-}-p_{j}\right)+\lambda_{0} p_{j}, \lambda_{+}, \lambda_{0} \geq 0
$$

And the foc and slackness conditions imply that

$$
\text { (6) } \lambda_{0}-\lambda_{+}+1+c_{j}-2 p_{j}=0, \lambda_{+}\left(p_{j}^{-}-p_{j}\right)=\lambda_{0} p_{j}=0
$$

CHARACTERIZATION 4

- Note that if $p_{j}^{-} \leq c_{j}$, seller j is better of not competing at all; otherwise, his optimal price satisfies the optimality conditions.
- These conditions imply a best response function

$$
\text { (7) } p_{j}\left(p_{-j}\right)=\left\{\begin{aligned}
\min \left\{\frac{1+c_{j}}{2}, \min _{i \neq j} p_{i}\right\} \text { if } c_{j}<\min _{i \neq j} p_{i} \\
{\left[\min _{i \neq j} p_{i}, 1\right] \text { if } c_{j} \geq \min _{i \neq j} p_{i} }
\end{aligned}\right.
$$

CHARACTERIZATION 5: SYMMETRIC SELLERS

- Let us now consider the case where all sellers have the same cost $c \in(0,1)$
- I claim that for each pair of sellers $i, j, p_{i}=p_{j}=c$
i. First note that buyers would only charge price $p_{j} \in[c, 1]$
ii. Second, if $\min _{i \neq j} p_{i}>c$, then the seller nets no profits from charging $p_{j} \geq \min _{i \neq j} p_{i}$ and

$$
\pi_{j}\left(p_{-j}\right)=\left\{\begin{array}{c}
\left(\frac{1-c}{2}\right)^{2} \text { if } \min _{i \neq j} p_{i} \geq \frac{1-c}{2} \\
\left(\min _{i \neq j} p_{i}-c\right)\left(1-\min _{i \neq j} p_{i}\right) \text { otherwise }
\end{array}>0\right.
$$

iii. This implies that seller j undercuts his opponents.
iv. But in equilibrium, this strategy is NOT sustainable since seller j must conjecture that other sellers i would intentionally allow j to undercut them and net the whole market

CHARACTERIZATION 6

- The preceding argument implies that there does not exist an equilibrium-for the case all sellers have the same marginal cost-in which any given seller charges a price strictly above marginal cost c and allows other sellers to undercut him
- Hence, the only price sustainable in equilibrium is $p=c$.
- This implies that so long as there are more than 2 sellers, the price is $p=c$ and the aggregate demand is $Q=1-c$
- Unlike the Cournot case, this holds for each finite n and not as a limiting result.

CHARACTERIZATION 7

- Now consider the case when there are 2 sellers and $c_{1}<c_{2}$
- There are two possible cases.
- Case 1: suppose that $c_{2} \in\left(\frac{1}{2}, 1\right)$ and $c_{1} \in\left(0,2 c_{2}-1\right)$, then the seller 1 may charge the monopoly price $p^{m}=\frac{1+c_{1}}{2}$ and seller 2 does not compete; otherwise, they would do so at a loss
- Case 2: If $c_{1}, c_{2} \in(0,1)$ and $c_{1} \geq 2 c_{2}-1$, then the seller cannot impose the monopoly price and charges $p_{1}=c_{2}$ and $p_{2} \in\left[c_{2}, 1\right]$.
- Notice that if there are more than 2 sellers but $c_{1}<c_{2} \leq \min _{m \in\{3,4, \cdots, n\}} c_{m}$, then the argument does not change from the 2 seller case.

COURNOT VERSUS BERTRAND

| Symmetric Case
 (cost is $c \in(\mathbf{0 , 1})$ | Cournot | Bertrand | Asymmetric
 Case | Cournot |
| :--- | :---: | :---: | :---: | :---: | Bertrand

