
LECTURE 1
JD R-M



WELCOME TO IO

• For today:

i. Class overview

ii. Optimization

iii. Probability Theory



CLASS TOPICS:

• Game theory market foundations

• Perfect Competition

• Monopolies

• Auctions

• Oligopolistic Competition

• Cartel Behavior

• Communication in markets



ORGANIZATION

1. Math and Probability Review

2. Perfect Competition (ideal markets)

3. Monopolies (Standard Monopoly, Price Discrimination, But why are they even legal?!)

4. Auctions (types of auctions, real-world auctions, optimal auctions, interdependence)

5. Monopolies are Auctions with potentially many buyers

6. Oligopolies (Cournot, Bertrand, Stackelberg, Entry Deterrence)

7. Cartels (Repeated interactions, Information, and Communication)



GRADING

i. 4 Problem Sets (10 points each)

ii. 1 Midterm (20 points)

iii. 1 Project (20 points)

iv. 1 in class Final (20 points)



PROBLEM SETS

• Must work in teams of 3-5

• Work must be typed up (including derivations)

• Late works receive an automatic 0

• Show your work

• They are long and tricky, so do them with anticipation AND come talk to me with questions (I seldom 
bite people)  

• Exam questions are re-writes of problem set questions.



MIDTERM AND FINAL

• 2 (long) questions to be done in 75 minutes

• Closed notes

• Comprehensive of all class material

• Word of advice: make-up exams always tend to be slightly harder than the original, so please avoid 
them as much as possible. 



PROJECT

• Warren Buffet hires you and asks you to find a company to buy

• Pick a firm, analyze its industry, finances, and prospects

• Present your pick to class and write a report rationalize your choice

• BUT there’s a catch. Warrant Buffet does not know or care about the formalism I taught you and you 
must present your argument rigorously but communicated to a general audience.

• Everyone MUST contribute (if you don’t, you get a 0)



ON TO TEACHING

• For today: I will cover optimization (in both an abstract manner and with an example)

• Make sure you review these topics carefully as you need them for the rest of your undergraduate career

• Please ask questions

• I will start with a general set up and then provide examples.



OPTIMIZATION

• Feasible vectors are 𝑥 ∈ ℜ! ≡ 𝑥 = 𝑥" "#$
! ∀𝑖 ∈ 1,2,⋯ , 𝑛 , 𝑥" ∈ −∞,∞ , 𝑛 ∈ 1,2,⋯ ≡ ℕ

• Objective function (function we want to maximize): 𝑓:ℜ! → ℜ

• Constraint functions (functions describing the limitations faced): ∀𝑗 ∈ 1,2,⋯ , 𝑘 , 𝑘 ∈ ℕ, 𝑔%: ℜ! → ℜ

Assumptions:

• Required: functions 𝑓, 𝑔& &#$
& are twice continuously differentiable

• Useful: concavity, supermodularity, monotonicity (to be explained in class)



PROBLEM AT HAND

• We want to pick an x, among those satisfying the constraints, that maximizes f: or that it solves

1 max
'∈ℜ!

𝑓 𝑥 𝑠. 𝑡. ∀𝑗 ∈ 1,2,⋯ , 𝑘 , 𝑔% 𝑥 ≥ 0

• It is useful to first observe how to solve the problem without the constraints: i.e.

2 max
'∈ℜ!

𝑓 𝑥



NECESSARY AND SUFFICIENT CONDITIONS 

• For a value 𝑥 ∈ ℜ! to be a local optimum, it must first satisfy the first order condition (FOC):

3 ∀𝑖 ∈ 1,2,⋯ , 𝑛 ,
𝜕𝑓 𝑥
𝜕𝑥"

≡ 𝑓" 𝑥 = 0.

• For the value to be a local minimizer, it must be that it satisfies the second order condition (SOC)

• If 𝑛 = 1, this implies that 𝑓** 𝑥 ≤ 0 (or 𝑓** 𝑥 ≥ 0 if you want to minimize something)

• Otherwise, one requires that 𝐻𝑓 𝑥 be a negative semi-definite matrix. It would be a positive semi-
definite if one is minimizing the objective function.

• NOTE: when f is concave, the FOC is a sufficient condition and the SOC can be ignored.  Also, if a point is 
a local maximum and f is concave, the point is also a global maximum.

• Note: If one is minimizing the function, then one needs a convex objective function FOC are sufficient 
conditions for global minima.



SOME FINER POINTS

• Because you identified 1 maximum, it need not be the only one,

• When the function is strictly concave, then there exists a unique maximizer

• If the function is strictly convex, there exists a unique minimizer

• If a function is concave, then FOC works even if the function does not have a derivative at every point in its domain

• In fact (but beyond the scope of your undergraduate education), one can relax differentiability significantly.

• I will assume that functions are concave in order to disregard SOC conditions and issue of local optimality



BACK TO THE PROBLEM IN QUESTION

• Note that the FOC characterizes the objective of a function WITHOUT constraints, but who cares about 
this since no interesting problem has no constraints

• Lagrange pointed out that this is previous step is nonetheless useful. Here is his procedure

1. For every constraint j, define 𝜆% ∈ ℜ+ = 𝑎 ∈ ℜ|𝑎 ≥ 0 as its multiplier

2. Define the function ℒ 𝑥, 𝜆% %#$
& = 𝑓 𝑥 + ∑%#$& 𝜆%𝑔% 𝑥

3. Solve the problem max
'∈ℜ!

ℒ 𝑥, 𝜆% %#$
&

4. This implies FOCs of the form: ∀𝑖 ∈ 1,2,⋯ , 𝑛 , ,- '∗

,'#
+ ∑%#$& 𝜆%

,.$ '∗

, '#
= 0

5. Notice that at the optimum, you added a 0 to 𝑓 𝑥∗ , so for every constraint j, 𝜆%𝑔% 𝑥∗ = 0.



EXAMPLE: IN CLASS…

• Let 𝑓 𝑥 = 𝑢 𝑛, 𝑏, 𝑙 = 𝛽𝛼 ln 𝑛 + 𝛽 1 − 𝛼 ln 𝑏 + 1 − 𝛽 ln 1 − 𝑙 , 𝛼, 𝛽 ∈ 0,1

• Constraints: 

1. Budget constraint: 𝑤𝑙 + 𝑦 − 𝑛 + 𝑝𝑏 ≥ 0,𝑤, 𝑦, 𝑝 ≫ 0

2. Non-negativity: 𝑛 ≥ 0, 𝑏 ≥ 0, 𝑙 ≥ 0

3. A limited number of time in a day: 𝑙 ≤ 1



EXAMPLE: 1

• Normally, the example is stated as follows:

4 𝑈 𝑤, 𝑦, 𝑝 = max
!,1 ∈ℜ%& ,2∈ 3,$

𝑢 𝑛, 𝑏, 𝑙 𝑠. 𝑡. 𝑛 + 𝑝𝑏 ≤ 𝑤𝑙 + 𝑦

• First observe that 𝑢 . is concave, so one CAN disregard the SOC 

• Secondly, the function is strictly concave, so there exists a unique maximum

• Thus, the FOC and Complementary Slackness (CS) suffice to characterize the problem

• Q: But should one also decide to discard CS conditions?

• A: No, you’ll see why…



EXAMPLE 2: 

• Let us now set up the Lagrangian as

5 ℒ 𝑛, 𝑏, 𝑙, 𝜆3!, 𝜆31 , 𝜆32 , 𝜆$2 , 𝜆 = 𝛽𝛼 ln 𝑛 + 𝛽 1 − 𝛼 ln 𝑏 + 1 − 𝛽 ln 1 − 𝑙

+𝜆3!𝑛 + 𝜆31𝑏 + 𝜆32 𝑙 + 𝜆$2 1 − 𝑙 + 𝜆 𝑤𝑙 + 𝑦 − 𝑛 + 𝑝𝑏

• Note that 𝜆3!, 𝜆31 , 𝜆32 , 𝜆 ≥ 0 𝑜𝑟 𝑡ℎ𝑎𝑡 𝜆3!, 𝜆31 , 𝜆32 , ∈ ℜ+4



EXAMPLE 3

• The FOCs are then

6
𝛽𝛼
𝑛 + 𝜆3! − 𝜆 = 0,

𝛽 1 − 𝛼
𝑏 + 𝜆31 − 𝑝𝜆 = 0,

− 1 − 𝛽
1 − 𝑙 + 𝜆32 − 𝜆$2 + 𝜆 = 0



EXAMPLE 4:

• But we also have the CS conditions:

7 𝜆3!𝑛 = 𝜆31𝑏 = 𝜆32 𝑙 = 𝜆$2 1 − 𝑙 = 𝜆 𝑤𝑙 + 𝑦 − 𝑛 + 𝑝𝑏 = 0.



EXAMPLE 5:

• Now, suppose that 𝑛 = 0, then 

8
𝛽𝛼
0 + 𝜆3! − 𝜆 = 0

• Notice that dividing by zero is never well defined, so one cannot define 𝜆, 𝜆3! from such condition. 
Hence, it must be the case that 𝑛 > 0.

• But notice that the CS condition states that 𝜆3!𝑛 = 0, so since 𝑛 > 0, 𝜆3! = 0.

• A similar argument shows that 𝑏 > 0, 𝑙 < 1 and hence 𝜆31 = 𝜆$2 = 0.



EXAMPLE 6:

• Next, it is now clear that the FOCs become

9
𝛽𝛼
𝑛 = 𝜆 =,

𝛽 1 − 𝛼
𝑝𝑏 , 𝜆32 + 𝜆 =

1 − 𝛽
1 − 𝑙

• Notice that this implies that 𝜆 > 0, so from CS, it must be the case that

10 𝑝𝑏 + 𝑛 = 𝑦 + 𝑤𝑙



EXAMPLE 7:

• Next, from the FOCs we just derived it holds that

11 𝑛 = 𝑝𝑏
𝛼

1 − 𝛼
• If one then combine	 10 and	 11 ,	it	holds	that

12 𝑝𝑏 + 𝑝𝑏
𝛼

1 − 𝛼 =
𝑝𝑏
1 − 𝛼 = 𝑦 + 𝑤𝑙

• Or that 𝑝𝑏 = 1 − 𝛼 𝑦 + 𝑤𝑙 and thus 𝑛 = 𝛼 𝑦 + 𝑤𝑙

• Q: But are we done?

• A: No, we need to know the value of 𝑙.



EXAMPLE 8:

• Suppose that 𝑙 > 0, then from the FOCs it holds that

13 𝜆 =
𝛽𝛼
𝑛 =

𝛽
𝑦 + 𝑤𝑙 =

1 − 𝛽
1 − 𝑙

• Or that

14 1 − 𝑙 𝛽 = 1 − 𝛽 𝑦 + 𝑤𝑙 ↔ 𝑙 =
𝛽 − 1 − 𝛽 𝑦
𝛽 + 1 − 𝛽 𝑤



EXAMPLE 9:

• This implies that 

𝑙 𝑦, 𝛽 =

𝛽 − 1 − 𝛽 𝑦
𝛽 + 1 − 𝛽 𝑤 𝑖𝑓

𝛽
1 − 𝛽 > 𝑦

0 𝑖𝑓
𝛽

1 − 𝛽 ≤ 𝑦

• It then follows that 𝑛 𝑦, 𝛽 = 𝛼 𝑦 + 𝑤𝑙 𝑦, 𝑏 , 𝑏 𝑦, 𝛽 = 1 − 𝛼 𝑦 + 𝑤𝑙 𝑦, 𝑏

• Punchline 1: If you’re wealthy enough, why work!

• Punchline 2: Don’t disregard the slackness conditions.



PROBABILITY THEORY

• We now move on to the second topic for today: probability theory.

• One seldom truly knows how nature operates as some features are obscured

• Q: But how does one, formally, describe how one believes that the world operate?

• A: With Probabilities!

• I will move from an example and the formalism to make things clear



EXAMPLE 1: ALICE GOES TO A STORE

• ALICE (A) COMES TO A SHOE SHOE STORE AND ASKS THE 
STORE EMPLOYEE, BOB (B), TO SHOW HER SOME POINTY 
SHOES

• BOB WANTS TO SELL ALICE THE MOST EXPENSIVE SHOES 
THAT ALICE IS WILLING TO BUY

• ALICE COULD BE WILLING TO SPEND UP TO 𝜈 ∈ 0,1 , BUT 
BOB JUST DOES NOT KNOW 𝜈.



SOME SET THEORY FIRST (PICTURES ARE COMING)

• A set A  is just a collection of things (any collection of things can be a set

• We say that a set B is a subset of A, or that 𝐵 ⊂ 𝐴, provided that for each element b in B (written as 𝑏 ∈
𝐵) b is also in A: formally 𝐵 ⊂ 𝐴 if and only if (iff) ∀𝑏 ∈ 𝐵, 𝑏 ∈ 𝐴

• An important set to note is ∅. This is the set with no elements.

• The union of sets A and B (written 𝐴 ∪ 𝐵) is the set that includes elements of either A or B: formally 𝐴 ∪
𝐵 = 𝑐| 𝑐 ∈ 𝐴 𝑜𝑟 𝑐 ∈ 𝐵

• The intersection  of set A and B (written as 𝐴 ∩ 𝐵) is the set that includes only the elements that belong 
to BOTH A and B: formally 𝐴 ∩ 𝐵 = 𝑐 𝑐 ∈ 𝐴 𝑎𝑛𝑑 𝑐 ∈ 𝐵

• Assume that all the elements in question belong to some set C and 𝐴 ⊂ 𝐶, then the complement of A 
are all of the elements of A that do not belong to A: formally, 𝐴5 = 𝑐 ∈ 𝐶 𝑐 ∉ 𝐴



ILLUSTRATIONS: 𝐴 ∪ 𝐵



ILLUSTRATION: 𝐴 ∩ 𝐵



ILLUSTRATION: 𝐴!



BASIC SET THEORY PROPERTIES:

1. For each set C, we can define the set of all of its subsets as 25 =
𝐴|𝐴 ⊂ 𝐶

2. Note that ∅ ⊂ 𝐶, 𝑠𝑜 ∅ ∈ 25

3. De Morgan’s Law: let A and B be two subsets of C, then 
𝐴 ∪ 𝐵 6 = 𝐴6 ∩ 𝐵6 and 𝐴 ∩ 𝐵 6 = 𝐴6 ∪ 𝐵6



PROBABILITY SPACE

• (How much Alice could be willing to spend) Assume that there exist a 
set (i.e. collection of things) of possible states of the world Ω

• (What Bob could Observe) But an individual could only observe
subsets of the state of the world Σ ⊂ 27

1. (If Bob can observe A, then he can Observe that he cannot observe A)
If 𝐴 ∈ Σ, then 𝐴6 ∈ Σ

2. (If Bob can observe A and B, then he can observe both things at the 
same time) If Bob can observe 𝐴% %#$

8 ⊂ Σ, then ∪%#$
8 𝐴% ∈ Σ

3. (Bob may know precisely nothing) ∅ ∈ Σ



PROBABILITIES 

• Now, probabilities are given by a function 𝑝: Σ → 0,1 such that

1. (Odds add up to 1) 𝑝 Ω = 1

2. (Odds of completely unrelated events is the sum of each event) For every collection of events 
𝐴% %#$

8 ⊂ Σ such that for each 𝑗 ≠ 𝑗* 𝐴% ∩ 𝐴%* = ∅, it holds that 𝑝 ∪%#$
8 𝐴% = ∑%#$

8 𝑝 𝐴%

• A tuple Ω, Σ, 𝑝 is called a probability space and heuristically each element means

1. Ω : the collection of things that can happen

2. Σ: the collection of things that can be observed

3. 𝑝: the odds that each thing may occur.



EXAMPLE: ALICE GOES TO THE STORE

• From Bob’s point of view, he expects that Ω = 𝜈 = $50, $150, $1,500

• But he only observe Σ = 𝐴$ = 𝑆ℎ𝑒 𝑑𝑟𝑒𝑠𝑠𝑒𝑠 𝑒𝑙𝑒𝑔𝑎𝑛𝑡𝑙𝑦 = $150 , 𝐴9 = 𝑆ℎ𝑒 𝑑𝑜𝑒𝑠𝑛*𝑡 = $50, $1,500

• His beliefs are two numbers 𝑝$ = Pr 𝐴$ ≥ 0, 𝑝9 = Pr 𝐴9 ≥ 0, 𝑝$ + 𝑝9 = 1

• Note that if Ω has a finite number of elements, then one can describe probabilities with a collection of nonnegative 
numbers for each possible event: e.g. 𝑝:3, 𝑝$:3 , 𝑝$,:33 ≥ 0, 𝑝:3 + 𝑝$:3 + 𝑝$,:33=1

• If Ω does not have a finite number elements this is not possible in general

• But if Ω ⊂ ℜ, then one can always define a function 𝐹:Ω → 0,1 such that ∀𝜔 ∈ Ω, 𝐹 𝜔 = Pr 𝜈 ≤ 𝜔

• If it happens to be that F is differentiable, then at least for any set A which is a countable sum of disjoint intervals 
belonging to Ω one can write Pr 𝐴 = ∫;𝐹

* 𝜔 𝑑𝜔 = ∫; 𝑓 𝜔 𝑑𝜔 𝑤ℎ𝑒𝑟𝑒 𝐹* 𝜔 ≡ 𝑓 𝜔



NEXT CLASS

• I conclude the discussion on probability theory and begin teaching perfect competition.


