## WELCOME TO IO

- For today:
i. Class overview
ii. Optimization
iii. Probability Theory


## CLASS TOPICS:

- Game theory market foundations
- Perfect Competition
- Monopolies
- Auctions
- Oligopolistic Competition
- Cartel Behavior
- Communication in markets


## ORGANIZATION

1. Math and Probability Review
2. Perfect Competition (ideal markets)
3. Monopolies (Standard Monopoly, Price Discrimination, But why are they even legal?!)
4. Auctions (types of auctions, real-world auctions, optimal auctions, interdependence)
5. Monopolies are Auctions with potentially many buyers
6. Oligopolies (Cournot, Bertrand, Stackelberg, Entry Deterrence)
7. Cartels (Repeated interactions, Information, and Communication)

## GRADING

i. 4 Problem Sets (10 points each)
ii. 1 Midterm ( 20 points)
iii. 1 Project (20 points)
iv. 1 in class Final (20 points)

## PROBLEM SETS

- Must work in teams of 3-5
- Work must be typed up (including derivations)
- Late works receive an automatic 0
- Show your work
- They are long and tricky, so do them with anticipation AND come talk to me with questions (I seldom bite people)
- Exam questions are re-writes of problem set questions.


## MIDTERM AND FINAL

- 2 (long) questions to be done in 75 minutes
- Closed notes
- Comprehensive of all class material
- Word of advice: make-up exams always tend to be slightly harder than the original, so please avoid them as much as possible.


## PROJECT

- Warren Buffet hires you and asks you to find a company to buy
- Pick a firm, analyze its industry, finances, and prospects
- Present your pick to class and write a report rationalize your choice
- BUT there's a catch. Warrant Buffet does not know or care about the formalism I taught you and you must present your argument rigorously but communicated to a general audience.
- Everyone MUST contribute (if you don’t, you get a 0)


## ON TO TEACHING

- For today: I will cover optimization (in both an abstract manner and with an example)
- Make sure you review these topics carefully as you need them for the rest of your undergraduate career
- Please ask questions
- I will start with a general set up and then provide examples.


## OPTIMIZATION

- Feasible vectors are $x \in \mathfrak{R}^{n} \equiv\left\{x=\left(x_{i}\right)_{i=1}^{n} \mid \forall i \in\{1,2, \cdots, n\}, x_{i} \in(-\infty, \infty)\right\}, n \in\{1,2, \cdots\} \equiv \mathbb{N}$
- Objective function (function we want to maximize): $f: \mathbb{R}^{n} \rightarrow \Re$
- Constraint functions (functions describing the limitations faced): $\forall j \in\{1,2, \cdots, k\}, k \in \mathbb{N}, g_{j}: \Re^{n} \rightarrow \Re$

Assumptions:

- Required: functions $\left(f,\left(g_{k}\right)_{k=1}^{k}\right)$ are twice continuously differentiable
- Useful: concavity, supermodularity, monotonicity (to be explained in class)


## PROBLEM AT HAND

- We want to pick an $x$, among those satisfying the constraints, that maximizes $f$ : or that it solves

$$
\text { (1) } \max _{x \in \mathcal{R}^{n}} f(x) \text { s.t. } \forall j \in\{1,2, \cdots, k\}, g_{j}(x) \geq 0
$$

- It is useful to first observe how to solve the problem without the constraints: i.e.
(2) $\max _{x \in \Re^{n}} f(x)$


## NECESSARY AND SUFFICIENT CONDITIONS

- For a value $x \in \Re^{n}$ to be a local optimum, it must first satisfy the first order condition (FOC):

$$
\text { (3) } \forall i \in\{1,2, \cdots, n\}, \frac{\partial f(x)}{\partial x_{i}} \equiv f_{i}(x)=0
$$

- For the value to be a local minimizer, it must be that it satisfies the second order condition (SOC)
- If $n=1$, this implies that $f^{\prime \prime}(x) \leq 0$ (or $f^{\prime \prime}(x) \geq 0$ if you want to minimize something)
- Otherwise, one requires that $H f(x)$ be a negative semi-definite matrix. It would be a positive semidefinite if one is minimizing the objective function.
- NOTE: when $f$ is concave, the FOC is a sufficient condition and the SOC can be ignored. Also, if a point is a local maximum and $f$ is concave, the point is also a global maximum.
- Note: If one is minimizing the function, then one needs a convex objective function FOC are sufficient conditions for global minima.


## SOME FINER POINTS

- Because you identified 1 maximum, it need not be the only one,
- When the function is strictly concave, then there exists a unique maximizer
- If the function is strictly convex, there exists a unique minimizer
- If a function is concave, then FOC works even if the function does not have a derivative at every point in its domain
- In fact (but beyond the scope of your undergraduate education), one can relax differentiability significantly.
- I will assume that functions are concave in order to disregard SOC conditions and issue of local optimality


## BACK TO THE PROBLEM IN QUESTION

- Note that the FOC characterizes the objective of a function WITHOUT constraints, but who cares about this since no interesting problem has no constraints
- Lagrange pointed out that this is previous step is nonetheless useful. Here is his procedure

1. For every constraint j, define $\lambda_{j} \in \mathfrak{R}_{+}=\{a \in \mathfrak{R} \mid a \geq 0\}$ as its multiplier
2. Define the function $\mathcal{L}\left(x,\left(\lambda_{j}\right)_{j=1}^{k}\right)=f(x)+\sum_{j=1}^{k} \lambda_{j} g_{j}(x)$
3. Solve the problem $\max _{x \in \mathcal{R}^{n}} \mathcal{L}\left(x,\left(\lambda_{j}\right)_{j=1}^{k}\right)$
4. This implies FOCs of the form: $\forall i \in\{1,2, \cdots, n\}, \frac{\partial f\left(x^{*}\right)}{\partial x_{i}}+\sum_{j=1}^{k} \lambda_{j} \frac{\partial g_{j}\left(x^{*}\right)}{\partial x_{i}}=0$
5. Notice that at the optimum, you added a 0 to $f\left(x^{*}\right)$, so for every constraint j, $\lambda_{j} g_{j}\left(x^{*}\right)=0$.

## EXAMPLE: IN CLASS...

- Let $f(x)=u(n, b, l)=\beta \alpha \ln n+\beta(1-\alpha) \ln b+(1-\beta) \ln (1-l), \alpha, \beta \in(0,1)$
- Constraints:

1. Budget constraint: $w l+y-(n+p b) \geq 0, w, y, p \gg 0$
2. Non-negativity: $n \geq 0, b \geq 0, l \geq 0$
3. A limited number of time in a day: $l \leq 1$

## EXAMPLE: 1

- Normally, the example is stated as follows:

$$
\text { (4) } U(w, y, p)=\max _{(n, b) \in \mathfrak{R}_{+}^{2}, l \in[0,1]} u(n, b, l) \text { s.t. } n+p b \leq w l+y
$$

- First observe that $u($.$) is concave, so one CAN disregard the SOC$
- Secondly, the function is strictly concave, so there exists a unique maximum
- Thus, the FOC and Complementary Slackness (CS) suffice to characterize the problem
- Q: But should one also decide to discard CS conditions?
- A: No, you'll see why...


## EXAMPLE 2:

- Let us now set up the Lagrangian as

$$
\text { (5) } \begin{gathered}
\mathcal{L}\left(n, b, l, \lambda_{0}^{n}, \lambda_{0}^{b}, \lambda_{0}^{l}, \lambda_{1}^{l}, \lambda\right)=\beta \alpha \ln n+\beta(1-\alpha) \ln b+(1-\beta) \ln (1-l) \\
+ \\
+\lambda_{0}^{n} n+\lambda_{0}^{b} b+\lambda_{0}^{l} l+\lambda_{1}^{l}(1-l)+\lambda[w l+y-(n+p b)]
\end{gathered}
$$

- Note that $\lambda_{0}^{n}, \lambda_{0}^{b}, \lambda_{0}^{l}, \lambda \geq 0$ (or that $\left.\left(\lambda_{0}^{n}, \lambda_{0}^{b}, \lambda_{0}^{l},\right) \in \Re_{+}^{4}\right)$


## EXAMPLE 3

- The FOCs are then
(6) $\frac{\beta \alpha}{n}+\lambda_{0}^{n}-\lambda=0, \frac{\beta(1-\alpha)}{b}+\lambda_{0}^{b}-p \lambda=0, \frac{-(1-\beta)}{1-l}+\lambda_{0}^{l}-\lambda_{1}^{l}+\lambda=0$


## EXAMPLE 4:

- But we also have the CS conditions:

$$
\text { (7) } \lambda_{0}^{n} n=\lambda_{0}^{b} b=\lambda_{0}^{l} l=\lambda_{1}^{l}(1-l)=\lambda[w l+y-(n+p b)]=0 .
$$

## EXAMPLE 5:

- Now, suppose that $n=0$, then

$$
\text { (8) } \frac{\beta \alpha}{0}+\lambda_{0}^{n}-\lambda=0
$$

- Notice that dividing by zero is never well defined, so one cannot define $\lambda, \lambda_{0}^{n}$ from such condition. Hence, it must be the case that $n>0$.
- But notice that the CS condition states that $\lambda_{0}^{n} n=0$, so since $n>0, \lambda_{0}^{n}=0$.
- A similar argument shows that $b>0, l<1$ and hence $\lambda_{0}^{b}=\lambda_{1}^{l}=0$.


## EXAMPLE 6:

- Next, it is now clear that the FOCs become

$$
\text { (9) } \frac{\beta \alpha}{n}=\lambda=, \frac{\beta(1-\alpha)}{p b}, \lambda_{0}^{l}+\lambda=\frac{(1-\beta)}{1-l}
$$

- Notice that this implies that $\lambda>0$, so from CS, it must be the case that

$$
\text { (10) } p b+n=y+w l
$$

## EXAMPLE 7:

- Next, from the FOCs we just derived it holds that

$$
\text { (11) } n=p b\left(\frac{\alpha}{1-\alpha}\right)
$$

- If one then combine (10) and (11), it holds that

$$
(12) p b+p b\left(\frac{\alpha}{1-\alpha}\right)=\frac{p b}{1-\alpha}=y+w l
$$

- Or that $p b=(1-\alpha)(y+w l)$ and thus $n=\alpha(y+w l)$
- Q: But are we done?
- A: No, we need to know the value of $l$.


## EXAMPLE 8:

- Suppose that $l>0$, then from the FOCs it holds that

$$
\text { (13) } \lambda=\frac{\beta \alpha}{n}=\frac{\beta}{y+w l}=\frac{1-\beta}{1-l}
$$

- Or that

$$
(14)(1-l) \beta=(1-\beta)(y+w l) \leftrightarrow l=\frac{\beta-(1-\beta) y}{\beta+(1-\beta) w}
$$

## EXAMPLE 9:

- This implies that

$$
l(y, \beta)=\left\{\begin{array}{c}
\frac{\beta-(1-\beta) y}{\beta+(1-\beta) w} \text { if } \frac{\beta}{1-\beta}>y \\
0 \text { if } \frac{\beta}{1-\beta} \leq y
\end{array}\right.
$$

- It then follows that $n(y, \beta)=\alpha(y+w l(y, b)), b(y, \beta)=(1-\alpha)(y+w l(y, b))$
- Punchline 1: If you're wealthy enough, why work!
- Punchline 2: Don't disregard the slackness conditions.


## PROBABILITY THEORY

- We now move on to the second topic for today: probability theory.
- One seldom truly knows how nature operates as some features are obscured
- Q: But how does one, formally, describe how one believes that the world operate?
- A: With Probabilities!
- I will move from an example and the formalism to make things clear


## EXAMPLE 1: ALICE GOES TO A STORE

- ALICE (A) COMES TO A SHOE SHOE STORE AND ASKS THE STORE EMPLOYEE, BOB (B), TO SHOW HER SOME POINTY SHOES
- BOB WANTS TO SELL ALICE THE MOST EXPENSIVE SHOES THAT ALICE IS WILLING TO BUY
- ALICE COULD BE WILLING TO SPEND UP TO $v \in[0,1]$, BUT BOB JUST DOES NOT KNOW $\nu$.



## SOME SET THEORY FIRST (PICTURES ARE COMING)

- A set A is just a collection of things (any collection of things can be a set
- We say that a set B is a subset of A , or that $B \subset A$, provided that for each element b in B (written as $b \in$ $B$ ) b is also in A : formally $B \subset A$ if and only if (iff) $\forall b \in B, b \in A$
- An important set to note is $\emptyset$. This is the set with no elements.
- The union of sets $A$ and $B$ (written $A \cup B$ ) is the set that includes elements of either $A$ or $B$ : formally $A \cup$ $B=\{c \mid c \in A$ or $c \in B\}$
- The intersection of set A and B (written as $A \cap B$ ) is the set that includes only the elements that belong to BOTH A and B: formally $A \cap B=\{c \mid c \in A$ and $c \in B\}$
- Assume that all the elements in question belong to some set C and $A \subset C$, then the complement of A are all of the elements of $A$ that do not belong to $A$ : formally, $A^{C}=\{c \in C \mid c \notin A\}$

ILLUSTRATIONS: $A \cup B$


## ILLUSTRATION: $A \cap B$



## ILLUSTRATION: $A^{c}$



## BASIC SET THEORY PROPERTIES:

1. For each set $C$, we can define the set of all of its subsets as $2^{C}=$ $\{A \mid A \subset C\}$
2. Note that $\emptyset \subset C$, so $\emptyset \in 2^{C}$
3. De Morgan's Law: let A and B be two subsets of C , then $(A \cup B)^{c}=A^{c} \cap B^{c}$ and $(A \cap B)^{c}=A^{c} \cup B^{c}$


## PROBABILITY SPACE

- (How much Alice could be willing to spend) Assume that there exist a set (i.e. collection of things) of possible states of the world $\Omega$
- (What Bob could Observe) But an individual could only observe subsets of the state of the world $\Sigma \subset 2^{\Omega}$

1. (If Bob can observe A, then he can Observe that he cannot observe A) If $A \in \Sigma$, then $A^{c} \in \Sigma$
2. (If Bob can observe $A$ and $B$, then he can observe both things at the same time) If Bob can observe $\left\{A_{j}\right\}_{j=1}^{J} \subset \Sigma$, then $\cup_{j=1}^{J} A_{j} \in \Sigma$
3. (Bob may know precisely nothing) $\emptyset \in \Sigma$

## PROBABILITIES

- Now, probabilities are given by a function $p: \Sigma \rightarrow[0,1]$ such that

1. (Odds add up to 1) $p(\Omega)=1$
2. (Odds of completely unrelated events is the sum of each event) For every collection of events $\left\{A_{j}\right\}_{j=1}^{J} \subset \Sigma$ such that for each $j \neq j^{\prime} A_{j} \cap A_{j}^{\prime}=\emptyset$, it holds that $p\left(\cup_{j=1}^{J} A_{j}\right)=\sum_{j=1}^{J} p\left(A_{j}\right)$

- A tuple $(\Omega, \Sigma, p)$ is called a probability space and heuristically each element means

1. $\Omega$ : the collection of things that can happen
2. $\Sigma$ : the collection of things that can be observed
3. $p$ : the odds that each thing may occur.

## EXAMPLE: ALICE GOES TO THE STORE

- From Bob's point of view, he expects that $\Omega=\{v=\$ 50, \$ 150, \$ 1,500\}$
- But he only observe $\Sigma=\left\{A_{1}=\right.$ She dresses elegantly $=\{\$ 150\}, A_{2}=$ She doesn' $\left.t=\{\$ 50, \$ 1,500\}\right\}$
- His beliefs are two numbers $p_{1}=\operatorname{Pr}\left(A_{1}\right) \geq 0, p_{2}=\operatorname{Pr}\left(A_{2}\right) \geq 0, p_{1}+p_{2}=1$
- Note that if $\Omega$ has a finite number of elements, then one can describe probabilities with a collection of nonnegative numbers for each possible event: e.g. $p_{50}, p_{150}, p_{1,500} \geq 0, p_{50}+p_{150}+p_{1,500}=1$
- If $\Omega$ does not have a finite number elements this is not possible in general
- But if $\Omega \subset \mathfrak{R}$, then one can always define a function $F: \Omega \rightarrow[0,1]$ such that $\forall \omega \in \Omega, F(\omega)=\operatorname{Pr}(v \leq \omega)$
- If it happens to be that $F$ is differentiable, then at least for any set $A$ which is a countable sum of disjoint intervals belonging to $\Omega$ one can write $\operatorname{Pr}(A)=\int_{A} F^{\prime}(\omega) d \omega=\int_{A} f(\omega) d \omega$ where $F^{\prime}(\omega) \equiv f(\omega)$


## NEXT CLASS

- I conclude the discussion on probability theory and begin teaching perfect competition.

