
Optimal Sequential Experimentation

Jorge D. Ramos-Mercado*

November 22, 2023

Abstract

I study flexible, sequential experimentation. A decision-maker (DM) learns
about a state by managing a jump-diffusion process with state-dependent dynamics.
He controls the diffusion’s precision and the state-dependent arrival rate of jumps, but
faces convex flow costs increasing in the amount of acquired information. I find that
an optimal pure-diffusion experiment exists. Intuitively, the DM cannot separately
manage the precision and composition of acquired information. Hence, any optimal
experiment (with jumps) equalizes the marginal benefits and costs of acquiring infor-
mation from both types of processes. In contrast, if the DM did not have to explicitly
experiment, Zhong (2021) finds it optimal to learn from learning from a pure-jump.

I study a flexible sequential experimentation problem. A decision-maker (DM) learns
about a payoff-relevant state by managing a jump-diffusion signal process. He controls
the diffusion’s precision and state-dependent arrival rate of jumps. The diffusion describes
imprecise but frequently arriving (i.e., Gaussian) information; meanwhile, jumps model
Poisson information: precise but infrequently arriving. If the DM is impatient and faces
flow costs that convexly increase with the amount of generate information, how should he
experiment? I find restricting the DM to only acquiring Gaussian information is without
loss of generality.

Wald (1947) first studied sequential experimentation. He studied until when a DM
should acquire noisy signals (i.e., experiments) about a relevant state prior to making an
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irreversible decision. Moscharini and Smith (2001), MS from henceforth, extends this
setting by allowing the DM to control the precision of a pure-diffusion signal process
where only the drift depends on the state. MS finds that precision increases in the expected
payoff from making a decision.

This generalization, nevertheless, imposes that the DM must learn gradually. This
is a restriction, because an experiment (seen as a Lévy signal process) may generate in-
dependent and infrequent jumps whose arrival rate depends on the state. In other words,
a more general set of experiments also allows the DM to learn discontinuously. Would
expanding the space of experiments make the DM better off? Zhong (2022), Z22 from
henceforth, finds that it does.

Rather than extending MS , Z22 considers a reduced-form approach. He assumes
that the DM directly picks a Martingale, Lévy process for his beliefs about the state.
Meanwhile, the cost of experimenting increases in the amount of information acquired—
itself, a function of beliefs. This manner of modeling experimentation costs follows from
the rational inattention literature e.g., Sims (2003), Hébert and Woodford (2021), Caplin
et al (2022), Macowiak et al (2023).1 Z22 finds a unique, robust prediction: it is optimal
to learn from a pure-jump process seeking to confirm the most likeky state.

In order to replicate such learning process, the DM must run an experiment producing
noise-less data. In the real-world, however, said experiments do not exist. Moreover,
managing an experiment’s data precision (i.e., data cleaning) is a central concern. Data
cleaning, for example, takes up roughly 60 percent of data scientists (Press 2016) and 80
percent of clinical researchers (Rozario et al 2017) time. In contrast, I extend MS ’s model
by allowing for experiments generating jumps, but assume costs are as in Z22 . This allows
me to model costs in a consistent fashion across experiments.

I find that a DM forced to explicitly experiment cannot be made strictly worse off
by disallowing him from acquiring Poisson information i.e., running an experiment with
jumps. The intuition goes as follows. The DM completes two, inseparable tasks: manage
data precision and decide how much to learn from the diffusion and from jumps. As a
consequence, if an optimal experiment generates jumps, the DM equalizes the marginal

1Said approach has garnered critique from Denti et al (2022) since this cost structure is inconsistent with
a model of experiment specific costs.
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benefit and costs of acquiring both types of information. Suppose that an optimal exper-
iment produces jumps. I exploit the fact that experiments run in continuous-time and the
information based cost structure to find a payoff-equivalent experiment that never gener-
ates jumps.

The rest of the paper proceeds as follows. Section 1 presents the model. Section 2 then
states the result. Section 3 concludes.

1 Model

I now present the model. A Bayesian decision-maker (DM) with Bernoulli preferences
picks from a finite set of alternatives A, |A| = 2, 3, . . .. His payoff also depends on an
unknown state x ∈ X ≡ {xi}ni=1 for n = 2, 3, . . .: payoffs are u : A × X → R ≫ 0.
Meanwhile, his initial beliefs are p ≡ (pi)

n
i=1 ∈ ∆n−1 where ∀i, pi ≡ Pr(x = xi) > 0.

Next, the DM is note required to decide from the outset. Instead, he can experiment
and make a decision at some time T ∈ [0,∞). The details of how he experiments are
presented below. However, if at time T he holds beliefs pT ∈ ∆n−1, his payoff from
making a decision are

F (pT ) ≡ max
a∈A

n∑
i=1

piTu(a, xi). (Terminal Payoffs)

I assume that for each pair of states xi, xj , argmaxa∈A u(a, xi) ∩ argmaxa∈A u(a, xi) ̸= ∅
if and only if (iff) xi = xj . This ensures that learning about the state is payoff relevant.

1.1 Information Acquisition Problem

Signals I now describe the experimentation problem. The DM picks a continuous-time
signal process and a signal-adapted stopping time T < ∞. The stopping time denotes
when experimentation stops and the DM makes an irreversible decision. An admissible
signal (i.e., experiment) s ≡ (st) is a jump-diffusion process such that s0 = 0 and at each
time t ∈ [0,∞)
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dst = µ(x) dt +
dBt√
ht

+ dNt (1)

The process B ≡ (Bt) is a Brownian motion with precision ht ≫ 0 and drift µ(x)
where µ : X → (−∞,∞) is an injective function. Meanwhile, N ≡ (Nt) is a compen-
sated jump process that is independent of B and jumps by 1 at a rate of λit ≥ 0 at time t

iff x = xi. Lastly, I assume that (ht, (λit)
n
i=1) satisfy the standard the standard Lipschitz

condition which ensuring that (st) admits a weak solution2, but no additional restrictions
are made on the set of feasible parameters.3

Information and Costs I now model an experiment’s flow costs. The costs of running
an experiment increase in the flow amount on information generated. To do so, I first
derive a measurement of the flow amount of information generated as in Z22 .

Let H : ∆n−1 → R ∈ C2 (e.g., entropy) be a strictly concave function and consider
the belief process (pt ≡ pit(x = xi | {sτ : τ ∈ [0, t]})) ⊂ [0, 1]. The flow amount of
information generated by (st) at time t is It ≡ −LH(pt) where L(·) is the infinitesimal
generator for (pt) i.e., for each function f , Lf(pt) ≡ limdt→0

f(pt)−f(pt−dt)

dt if said limit
exists. Lastly, the flow cost of experimenting at time t is c(It) for some c(·) being a strictly
increasing, convex, and twice differentiable function. Lastly, I assume that (It) ⊂ [0, Ī]

for some constant Ī > 0. This means that the DM faces a constraint on how much from
information he can acquire.

Payoffs I now describe payoffs. If the DM picks signal s (that generates processes (pt)
and (It)) and an s-adapted stopping time T , then at time t ( ≤ T ) expected payoffs are

Vt(s, T ) ≡ Et

[
e−r(T−t)F (pT )−

∫ T

t

c(It)e
−(τ−t)dτ | {sτ : τ ∈ [0, t]}

]
(Payoffs)

2See for example Oksendal and Sulem (2019) among others
3I choose this model for its parsimony. One could allow the decision-maker to observe a multidimen-

sional Jump-diffusion and for jumps to take on a finite number of jumps—for instance. However, the results
would extend, but the statements in the results would be more complex.
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Hence, the DM’s problem given initial beliefs p is

V (p) = max
s,T

V0(s, T ). (Unconstrained Problem)

Alternatively, the DM may be forced to only acquire pure-diffusion experiments:

U(p) = max
s,T

V0(s, T )s.t. ∀i, t, λit = 0a.s. (Constrained Problem)

I conclude by noting that U(p) ≤ V (p) since all signals feasible in the restricted
problem are also feasible in the unrestricted problem.

2 Results.

I now present my results. The proof has four parts. First, I explicitly derive beliefs.
Next, I use standard techniques from stochastic calculus to derive a value function for the
restricted and unrestricted problems. I then conduct a sequence of change of variables
which makes my main result straightforward.1

2.1 Belief dynamics

I first characterize how a function of Bayes beliefs, derived from (st), changes over time.

Lemma 2.1. Fix s = (st). Let (pt) be the s-adapted Bayes consistent beliefs. Then for

each f : ∆n−1 → R ∈ C2, then

Lf(pt) = ht

∑
ij

pitpjt
2

(µi−µt)(µj −µt)fij(pt)+λt[f(νt)− f(pt)−∇f(pt) · (νt− pt)]

=
ht

2
tr[µ̃′

tHf(pt)µ̃t] + λt[f(νt)− f(pt)−∇f(pt) · (νt − pt)] (2)

where fij(pt) = ∂pi∂pjf(pt), λt ≡
∑

i pitλit, µt ≡
∑

i pitµi, νt ≡ (pit−
λit−
λt−

)ni=1, µ̃t ≡
(pit(µi − µt))

n
i=1, pt− = limdt→0 pt−dt, f(·)’s hessian at pt is Hf(pt), and tr(·) is a trace.
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I now sketch the proof, but delegate the derivation to appendix A.1. Note that the jump
and diffusion process are independent. This allows me to approximate each as separate
binomials. For some small, time interval dt> 0, the diffusion jumps up by ±

√
dt/ht with

probability ≈ (1 ± µi

√
htdt)/2 when x = xi. Note that I denote µi ≡ µ(xi) for each i.

Likewise, the jump process jumps by 1 with probability ≈ λitdt, but it otherwise remains
equal to 0. I then approximate the change in a function of beliefs f(·) ∈ C2 in two parts:
there is or there is no jump. When there is a jump, Bayes rule updated beliefs solely on the
relative arrival rate of jumps; meanwhile, there is no jump, the change in f is approximated
via Taylor’s rule.

Next, I make two observations. First, if at some time t ≥ 0, ∀xi, λxit = 0, then I can
define νt = pt− since jumps are a 0-probability event. The second observation is that the
dynamics when the DM cannot elicit jumps follow immediately and are stated below.

Corllary 2.2. Let s = (st) be a signal such that at each time t and x = 0, 1, λxt = 0

almost surely (a.s.), then for each twice continuously differentiable function f(·), it holds

that Lf(pt) = ht

2
tr[µ̃′

tHf(pt)µ̃t].

2.2 Re-formulating the Experimentation Problems

Now that the beliefs dynamics are well-defined, I define the cost function, derive the
Hamilton-Jacobi-Bellman (HJB) that the decision-maker’s problem must solve, and then
reformulate it in a more useful fashion. First, I characterize the costs function. Fix
some signal s = (st) process, then at each time t the amount of information generate
is It ≡ ht

2
tr[µ̃′

tH[H(pt)]µ̃t] + λt[H(pt) − H(νt) − ∇H(pt) · (pt − νt)]. Now that I de-
rived an expression for the amount of information generated, the flow costs are c(It). The
formula above further illustrates several points of note. First, the signal precision enters
linearly into the total amount of information and separable from the information derived
from jumps. This is a feature of the continuous-time modeling choice and plays a key role
in the result below.

Next, I derive an expression for the HJB describing the DM’s optimal experimentation
problem. The DM’s problem can be written as a function of his beliefs pt at each time
t. By the principle of optimality, if at some belief pt ∈ ∆n−1, V (pt) > F (pt), then V (·)
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satisfies

rV (pt) = max
ϕt

−ht
2

tr[µ̃′
tHV (pt)µ̃t] + λt[V (νt)− V (pt)−∇V (pt) · (νt − pt)]− c[I(ϕt, pt)] (3)

s.t. ϕt ≡ (ht, (λit)) ht > 0, ∀i, λit ≥ 0, I(ϕt, pt) ≤ Ī .
Oksendal and Sulem (2019) establish that the HJB equation, at least, admits a viscos-

ity solution. This is because the DM’s problem reduces to picking a locally Lipschitz
collection of parameter process. They even extend the existence proof to a much broader
set of problems than the one studied in this paper.

This HJB equation is far too general to make any useful insights. Instead, I consider
a change of variables that clarifies the structure of the value function. Assume that the
DM picks βt, νt, and jt such that jt ≡ λt[H(pt) − H(νt) − ∇H(pt) · (pt − νt)] and
βt ≡ ht

2
tr[µ̃′

tH[H(pt)]µ̃t] Then the flow of acquiring information is c(It) = c(βt+ jt). The
generator of any function f : ∆n−1 → R ∈ C2 becomes

Lf(pt) = βtL(f, pt) + jtG(f, pt, νt)

where G(f, pt, νt) ≡ − f(νt)−f(pt)−∇f(pt)·(νt−pt)
H(νt)−H(pt)+∇H(pt)·(νt−pt)

and L(f, pt) ≡ tr[µ̃′
tHf(pt)µ̃t]

−tr[µ̃′
tH[H(pt)]µ̃t]

. I can
now state a more useful reformulation of the value function if F (pt) < V (pt), then

rV (pt) = max
jt,νt,βt

βtL(V, pt) + jtG(V, pt, νt)− c(βt + jt) (4)

such that jt ≥ 0, νt ∈ ∆n−1, βt > 0, jt + βt ≤ Ī .
This formulation is useful since the problem separates the DM’s problem into one of

picking how much information to acquire from the diffusion (i.e., βt), how much informa-
tion to acquire from the jumps (jt), and the posterior belief conditional on the arrival of a
jump (νt).

In a similar fashion, the restricted problem forces that for each i = 1, 2, . . . , n λit = 0

for certain. This implies that jt = 0 and νt = pt. As a consequence, I can make the
same derivations for the restricted problem and the value function U(·) satisfies that if
F (pt) < U(pt), then

rU(pt) = max
βt∈(0,Ī]

βtL(U, pt)− c(βt) (5)
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(a) Policy function (b) Comparison to MS.

Figure 1: Policy function and comparison to Moscarini and Smith (2001).

I now characterize the value function U(·) and its optimal control in the lemma below.

Lemma 2.3. The HJB stated in equation 5 has a unique solution U(·) that is twice con-

tinuously differentiable and admits a unique, optimal control that is a Markov function of

pt i.e., σ̄ : ∆n−1 → R+ .

The lemma is an immediate application of Theorem 1 and 2 from Strulovici and Szyd-
lowski (2015). Now that the bound Ī < ∞ simply ensures that the set of choices is a
non-empty, compact space. Next, I illustrate the resulting policy function β(·) when Ī is
large, c(I) = I2/2, x = 0, 1, p ≡ Pr(x = 1) ∈ (0, 1), H is entropy, a = 0, 1, and terminal
payoffs are u(a, x) = a(x− 1/2). Said policy function is illustrated in the left-hand panel
of figure 1. I find that the total amount of information acquired falls as beliefs approach a
cutoff of p̄ < 1. When pt = p̄, the DM stops experimenting and picks a = 1.

Next, I consider an analogous version of the model in MS where the flow cost of
managing a pure-diffusion signal with precision process (ht) has flow costs h2

t/2. I then
estimate the flow amount of information acquired as measured by H(·) and take its log—
since it makes the resulting value smaller. The right-hand panel in figure 1 illustrates (in
red) the resulting log-amount of information acquired. I find that the DM in MS’s model
would acquire more information and would only stop experimenting when his beliefs reach
a higher cutoff belief—near 1.
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2.3 Main Result

This section presents my main result. I will first state the result and then provide the proof.

Theorem 2.4. Only generating Gaussian information is without loss: ∀pt, U(pt) = V (pt).

This theorem implies that restricting the DM to picking a diffusion signal is without
loss of generality. The proof goes as follows. First, it is immediate that for each belief
pt ∈ ∆n−1, it must be that U(pt) ≤ V (pt). This is because a control ϕU ≡ (β, I, ν) :

∆n−1 → R++×R+×∆n−1 such that h(·) is the same control maximizing the constrained
problem, I(pt) = 0 and ν(pt) = pt is an admissible control for the general problem.
Hence, the payoff from using said control when the current belief is pt can be defined as
V (pt;ϕU) and it holds that V (pt, ϕU) = U(pt) and V (pt, ϕU) ≤ V (pt).

What I need to show is that the inequality also holds in the opposite directions i.e.,
U(pt) ≥ V (pt). First observe that if at belief pt ∈ ∆n−1, it holds that V (pt) = F (pt), then
U(pt) = F (pt) since

F (pt) ≤ U(pt)︸ ︷︷ ︸
restricted DM can stop

≤ V (pt) = F (pt)︸ ︷︷ ︸
Unrestricted DM wants to stop

.

This implies that it is without loss of generality to focus on the set of beliefs pt for which
the DM prefers to experiment when he is not restricted: C ≡ {pt ∈ ∆n−1 : V (pt) >

U(pt)}. Next suppose that ϕ′ = (β′, I ′, ν ′)∆n−1 → R++ × R+ ×∆n−1 attains the maxi-
mum of the HJB equation 4. At each belief pt ∈ C, ϕ′(pt) must satisfy two conditions—
that are interior for large enough P . First, ϕ′(pt) must satisfy the first order conditions.
This implies that βt ≫ 0 for pt ∈ C and satisfies c′(βt + jt) = L(pt). Likewise, if
I ′(pt) > 0, then it must satisfy that

c′(βt + It)︸ ︷︷ ︸
Marg. cost of Info.

= G(V, pt, νt)︸ ︷︷ ︸
Marg. benefit of breakthroughs

= L(V, pt)︸ ︷︷ ︸
Marg. benefit of noisy data

Secondly, it must satisfy the principle of optimality i.e., for each pt ∈ C, it holds that

rV (pt) = β′(pt)L(V, pt) +G(V, pt, ν
′(pt))I

′(pt)− c[βt(pt) + It(pt)]

= [β′(pt) + I ′(pt)]L(V, pt)− c[βt(pt) + It(pt)]
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Notice that the second line follows from the observation that the marginal benefits both
types of information must be equalized whenever the DM pick a strictly positive amount
of both types of information. On the other hand, if I ′(pt) = 0, then the expression is
unaffected by the I ′(·) part of the expression. Alternatively, let ϕ̄ ≡ (β̄, Ī , ν̄) : [0, 1] →
R2

+ × [0, 1] be defined for each pt as β̄(pt) = β′(pt) + I ′(pt), Ī(pt) = 0, and ν(pt) = pt.
Then, by construction, σ̄(pt) satisfies the first order conditions for the optimization prob-
lem and for each pt ∈ C, it holds that V (pt) = β̄(pt)L(V, pt) − c(β̄t(pt)). Consequently,
it holds that for each pt V (pt; ϕ̄) = V (pt). Likewise, ϕ̄ is admissible in the constrained
problem. This implies that for each pt, it holds that V (pt) = V (pt;ϕ) ≤ U(pt). This
establishes the result.

3 Discussion

This paper studies optimal, flexible, sequential experimentation. I find that restricting the
decision-maker to only run pure-diffusion experiments (i.e., learn gradually over time) is
without loss of generality. Indeed, it makes no difference if the DM acquires information
often and gradually or rarely and abruptly if he is required to learn by generating noisy
data himself.

This result, nonetheless, hinges on (at least) two assumptions. First, assuming that
the flow costs depend on the amount of information acquired is not without loss. For
example, if the flow costs depend on a general function of the model parameters, it is not
that similarly stark results can be found. Secondly, my results depend on the assumption
that an experiment is a data generating process that always generates measurement error.
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A Proofs

A.1 Deriving dynamics.

In this section, I present the characterization of beliefs. Informally, I approximate the
signal process in discrete time and take limits.

Approximating signals in discrete-time Fix some small time interval dt> 0, then an
admissible signal s = (st) can be approximated at times t = 0, dt, . . . as s0 = 0 and
dst ≡ st+dt − st

dst = ddt
t + Jdt

t (6)

for (ddt
t )

∞
t=0 is a sequence of independent random variables such that at time t, ddt

t =

±
√

dt/ht with probability [1− µi

√
htdt]/2 iff x = xi; meanwhile, (Jdt

t )
∞
t=0 is a sequence

of independent random variables such that Jdt
t = 1 with probability λitdt and Jdt

t = 0

with probability 1− λitdt iff x = xi. This means that the independent diffusion and jump
processes are weakly approximated to since the objective is to approximate a generator.

Approximating beliefs after a jump I first consider the case when there are jumps.
Suppose that the DM held beliefs pt−dt = (pit−dt), then the Bayes posterior belief that
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x = xi given the jump is approximately equal to

pit =
pit−dtdtλit∑
j pjt−dtdtλjt

+ o(dt) =
pit−dtλit∑
j λjtpjt−dt

+ o(dt)

where the error term o(dt) (such that limdt↘0 o(dt)/dt = 0) follows from the observation
that distribution of ddt

t approximately gives equal weight to both outcomes as dt goes to 0.
Further observe that as dt goes to 0, it holds that

pit =
pit−λit∑
j pjt−λjt

=
pit−λit

λt

= νit.

It is further the case that the expected change in beliefs equals to dpit ≡ pit − pit−dt and
satisfies that

dpit =
pit−dt(λit − λt)

λt

Approximating beliefs when there is no jump Next, I characterize how beliefs change
when Jdt

t = 0. Suppose that the DM observes dst = ±
√

dt/ht, then the probability of
observing said signal realization conditional on x = xi, for i = 1, 2 . . . , n, is

Prt(dst = ±
√

dt/ht|x = xi) = [1− λitdt ± µi

√
htdt]/2 + o(dt)

Once again, if the prior belief is pt−dt = (pit−dt), then the Bayes posterior beliefs are

pit =
pit−dt[1− λitdt ± µi

√
htdt]∑

j pjt−dt[1− λjtdt ± µj

√
htdt]

+ o(dt) =
pit−dt[1− λitdt ± µi

√
htdt]

1− λtdt ± µt
√
htdt

+ o(dt).

This equation implies that the change in beliefs dpit ≡ pit−pit−dt can be approximated
as

dpit =
pit−dt[±(µi − µt)

√
htdt − (λit − λt)dt]

1− λtdt ± µt

√
htdt

+ o(dt)

and the probability that beliefs change by the amount described above occurs with a prob-
ability of approximately (1− λtdt ± µt

√
htdt)/2.

Approximating the expected change in beliefs Given the approximations for the change
in beliefs given above, I now take expectations. First, conditional on there being no jump,
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the expected change in beliefs equals to

E[dpit|Jdt
t = 0] = pit−dt[(µi − µt)

√
htdt − (λit − λt)dt]/2− pit−dt[(µi − µt)

√
htdt + (λit − λt)dt]/2 + o(dt)

= −pit−dt(λit − λt)dt + o(dt) = −λt(νit − pit−dt)dt + o(dt).

Note that the expected change in beliefs when there is no jump is

E[dpt|Jdt
t = 1] = νt − pt.

As a consequence, the unconditional change in beliefs just equals to the expectation over
the conditional expectations i.e.,

E[dpit] = λtdt
(
pit−dt(λit − λt)

λt

)
+ (1− λtdt)E[dpit|Jdt

t = 0] = o(dt).

Observe that this term holds due to the Law of Iterated expectations. I will exploit
this observation again when estimating the change of a variable. Further notice that the
approximations imply that beliefs will form a martingale.

Approximating the co-movement of beliefs Next, conditional on no jumps to co-movement
of the belief that x = xi or xj (for i, j = 1, 2, . . . , n) is

dpitdpjt =
[
htpit−dtpjt−dt(µi − µt)(µj − µt)

1± µ2
thtdt

]
dt + o(dt)

occurs with a probability of roughly (1 ± µ2
thtdt)/2. The expected covariance in the

change of said observations is then equal to

E[dpitdpjt|Jdt
t = 0] = htpit−dtpjt−dt(µi − µt)(µj − µt)dt + o(dt).

Approximating the generator Lastly, I approximate the generator. Let f : ∆n−1 → R

be a twice continuously differentiable function, then I need to calculate E[df(pt)]/dt as dt
goes to 0. Note that df(pt) = f(pt)− f(pt−dt). I can partition the expectation by the law
of iterated expectations. If there is a jump, then

E[df(pt)|Jdt
t = 1] = f(νt)− f(pt−dt).
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Alternatively, there may have been no jumps, then the change in beliefs can be approx-
imated via a quadratic Taylor approximation as

E[df(pt)|Jdt
t = 0] = E[∇f(pt) · (dpit) + (dpit)Hf(pt) · (dpit)/2|Jdt

t = 0] + o(dt)

= −∇f(pt) · (νt − pt−dt)λtdt +
ht

2
dt
∑
ij

pit−dtpjt−dt(µi − µt)(µj − µt)fij(pt−dt) + o(dt)

Since the probability of a jump is approximately λtdt, then the unconditional expectation
equals to

Et[df(pt)] = λtdt[f(νt)− f(pt)] + [1− = λt∆]× E[df(pt)|Jdt
t = 0]

=
ht

2
dt
∑
ij

pit−dtpjt−dt(µi − µt)(µj − µt)fij(pt−dt) + [f(νt)− f(pt−dt)−∇f(pt) · (νt − pt−dt)]λtdt + o(dt)

Dividing both sides of the expression above by dt and taking the limit as dt goes to 0 it
yields that

Lf(pt) =
ht

2

∑
ij

pitpjt(µi − µt)(µj − µt)fij(pt) + λt[f(νt)− f(pt)−∇f(pt) · (νt − pt)].

This concludes the proof.
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